Abstract:We introduce the LZ penalty, a penalty specialized for reducing degenerate repetitions in autoregressive language models without loss of capability. The penalty is based on the codelengths in the LZ77 universal lossless compression algorithm. Through the lens of the prediction-compression duality, decoding the LZ penalty has the interpretation of sampling from the residual distribution after removing the information that is highly compressible. We demonstrate the LZ penalty enables state-of-the-art open-source reasoning models to operate with greedy (temperature zero) decoding without loss of capability and without instances of degenerate repetition. Both the industry-standard frequency penalty and repetition penalty are ineffective, incurring degenerate repetition rates of up to 4%.
Abstract:While frontier large language models (LLMs) are capable tool-using agents, current AI systems still operate in a strict turn-based fashion, oblivious to passage of time. This synchronous design forces user queries and tool-use to occur sequentially, preventing the systems from multitasking and reducing interactivity. To address this limitation, we introduce asynchronous AI agents capable of parallel processing and real-time tool-use. Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting, integrated with automatic speech recognition and text-to-speech. Drawing inspiration from the concepts originally developed for real-time operating systems, this work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.