Abstract:An important task in high-dimensional statistics is learning the parameters or dependency structure of an undirected graphical model, or Markov random field (MRF). Much of the prior work on this problem assumes access to i.i.d. samples from the MRF distribution and state-of-the-art algorithms succeed using $n^{\Theta(k)}$ runtime, where $n$ is the dimension and $k$ is the order of the interactions. However, well-known reductions from the sparse parity with noise problem imply that given i.i.d. samples from a sparse, order-$k$ MRF, any learning algorithm likely requires $n^{\Omega(k)}$ time, impeding the potential for significant computational improvements. In this work, we demonstrate that these fundamental barriers for learning MRFs can surprisingly be completely circumvented when learning from natural, dynamical samples. We show that in bounded-degree MRFs, the dependency structure and parameters can be recovered using a trajectory of Glauber dynamics of length $O(n \log n)$ with runtime $O(n^2 \log n)$. The implicit constants depend only on the degree and non-degeneracy parameters of the model, but not the dimension $n$. In particular, learning MRFs from dynamics is $\textit{provably computationally easier}$ than learning from i.i.d. samples under standard hardness assumptions.
Abstract:One of the most natural approaches to reinforcement learning (RL) with function approximation is value iteration, which inductively generates approximations to the optimal value function by solving a sequence of regression problems. To ensure the success of value iteration, it is typically assumed that Bellman completeness holds, which ensures that these regression problems are well-specified. We study the problem of learning an optimal policy under Bellman completeness in the online model of RL with linear function approximation. In the linear setting, while statistically efficient algorithms are known under Bellman completeness (e.g., Jiang et al. (2017); Zanette et al. (2020)), these algorithms all rely on the principle of global optimism which requires solving a nonconvex optimization problem. In particular, it has remained open as to whether computationally efficient algorithms exist. In this paper we give the first polynomial-time algorithm for RL under linear Bellman completeness when the number of actions is any constant.
Abstract:In this paper, we study the offline RL problem with linear function approximation. Our main structural assumption is that the MDP has low inherent Bellman error, which stipulates that linear value functions have linear Bellman backups with respect to the greedy policy. This assumption is natural in that it is essentially the minimal assumption required for value iteration to succeed. We give a computationally efficient algorithm which succeeds under a single-policy coverage condition on the dataset, namely which outputs a policy whose value is at least that of any policy which is well-covered by the dataset. Even in the setting when the inherent Bellman error is 0 (termed linear Bellman completeness), our algorithm yields the first known guarantee under single-policy coverage. In the setting of positive inherent Bellman error ${\varepsilon_{\mathrm{BE}}} > 0$, we show that the suboptimality error of our algorithm scales with $\sqrt{\varepsilon_{\mathrm{BE}}}$. Furthermore, we prove that the scaling of the suboptimality with $\sqrt{\varepsilon_{\mathrm{BE}}}$ cannot be improved for any algorithm. Our lower bound stands in contrast to many other settings in reinforcement learning with misspecification, where one can typically obtain performance that degrades linearly with the misspecification error.
Abstract:Motivated by the problem of detecting AI-generated text, we consider the problem of watermarking the output of language models with provable guarantees. We aim for watermarks which satisfy: (a) undetectability, a cryptographic notion introduced by Christ, Gunn & Zamir (2024) which stipulates that it is computationally hard to distinguish watermarked language model outputs from the model's actual output distribution; and (b) robustness to channels which introduce a constant fraction of adversarial insertions, substitutions, and deletions to the watermarked text. Earlier schemes could only handle stochastic substitutions and deletions, and thus we are aiming for a more natural and appealing robustness guarantee that holds with respect to edit distance. Our main result is a watermarking scheme which achieves both undetectability and robustness to edits when the alphabet size for the language model is allowed to grow as a polynomial in the security parameter. To derive such a scheme, we follow an approach introduced by Christ & Gunn (2024), which proceeds via first constructing pseudorandom codes satisfying undetectability and robustness properties analogous to those above; our key idea is to handle adversarial insertions and deletions by interpreting the symbols as indices into the codeword, which we call indexing pseudorandom codes. Additionally, our codes rely on weaker computational assumptions than used in previous work. Then we show that there is a generic transformation from such codes over large alphabets to watermarking schemes for arbitrary language models.
Abstract:We initiate the study of Hamiltonian structure learning from real-time evolution: given the ability to apply $e^{-\mathrm{i} Ht}$ for an unknown local Hamiltonian $H = \sum_{a = 1}^m \lambda_a E_a$ on $n$ qubits, the goal is to recover $H$. This problem is already well-studied under the assumption that the interaction terms, $E_a$, are given, and only the interaction strengths, $\lambda_a$, are unknown. But is it possible to learn a local Hamiltonian without prior knowledge of its interaction structure? We present a new, general approach to Hamiltonian learning that not only solves the challenging structure learning variant, but also resolves other open questions in the area, all while achieving the gold standard of Heisenberg-limited scaling. In particular, our algorithm recovers the Hamiltonian to $\varepsilon$ error with an evolution time scaling with $1/\varepsilon$, and has the following appealing properties: (1) it does not need to know the Hamiltonian terms; (2) it works beyond the short-range setting, extending to any Hamiltonian $H$ where the sum of terms interacting with a qubit has bounded norm; (3) it evolves according to $H$ in constant time $t$ increments, thus achieving constant time resolution. To our knowledge, no prior algorithm with Heisenberg-limited scaling existed with even one of these properties. As an application, we can also learn Hamiltonians exhibiting power-law decay up to accuracy $\varepsilon$ with total evolution time beating the standard limit of $1/\varepsilon^2$.
Abstract:Supervised learning is often computationally easy in practice. But to what extent does this mean that other modes of learning, such as reinforcement learning (RL), ought to be computationally easy by extension? In this work we show the first cryptographic separation between RL and supervised learning, by exhibiting a class of block MDPs and associated decoding functions where reward-free exploration is provably computationally harder than the associated regression problem. We also show that there is no computationally efficient algorithm for reward-directed RL in block MDPs, even when given access to an oracle for this regression problem. It is known that being able to perform regression in block MDPs is necessary for finding a good policy; our results suggest that it is not sufficient. Our separation lower bound uses a new robustness property of the Learning Parities with Noise (LPN) hardness assumption, which is crucial in handling the dependent nature of RL data. We argue that separations and oracle lower bounds, such as ours, are a more meaningful way to prove hardness of learning because the constructions better reflect the practical reality that supervised learning by itself is often not the computational bottleneck.
Abstract:We revisit the fundamental question of simple-versus-simple hypothesis testing with an eye towards computational complexity, as the statistically optimal likelihood ratio test is often computationally intractable in high-dimensional settings. In the classical spiked Wigner model (with a general i.i.d. spike prior) we show that an existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates among all computationally efficient tests, even though there are exponential-time tests that do better. This result is conditional on an appropriate complexity-theoretic conjecture, namely a natural strengthening of the well-established low-degree conjecture. Our result shows that the spectrum is a sufficient statistic for computationally bounded tests (but not for all tests). To our knowledge, our approach gives the first tool for reasoning about the precise asymptotic testing error achievable with efficient computation. The main ingredients required for our hardness result are a sharp bound on the norm of the low-degree likelihood ratio along with (counterintuitively) a positive result on achievability of testing. This strategy appears to be new even in the setting of unbounded computation, in which case it gives an alternate way to analyze the fundamental statistical limits of testing.
Abstract:We study the problem of learning a local quantum Hamiltonian $H$ given copies of its Gibbs state $\rho = e^{-\beta H}/\textrm{tr}(e^{-\beta H})$ at a known inverse temperature $\beta>0$. Anshu, Arunachalam, Kuwahara, and Soleimanifar (arXiv:2004.07266) gave an algorithm to learn a Hamiltonian on $n$ qubits to precision $\epsilon$ with only polynomially many copies of the Gibbs state, but which takes exponential time. Obtaining a computationally efficient algorithm has been a major open problem [Alhambra'22 (arXiv:2204.08349)], [Anshu, Arunachalam'22 (arXiv:2204.08349)], with prior work only resolving this in the limited cases of high temperature [Haah, Kothari, Tang'21 (arXiv:2108.04842)] or commuting terms [Anshu, Arunachalam, Kuwahara, Soleimanifar'21]. We fully resolve this problem, giving a polynomial time algorithm for learning $H$ to precision $\epsilon$ from polynomially many copies of the Gibbs state at any constant $\beta > 0$. Our main technical contribution is a new flat polynomial approximation to the exponential function, and a translation between multi-variate scalar polynomials and nested commutators. This enables us to formulate Hamiltonian learning as a polynomial system. We then show that solving a low-degree sum-of-squares relaxation of this polynomial system suffices to accurately learn the Hamiltonian.
Abstract:The key assumption underlying linear Markov Decision Processes (MDPs) is that the learner has access to a known feature map $\phi(x, a)$ that maps state-action pairs to $d$-dimensional vectors, and that the rewards and transitions are linear functions in this representation. But where do these features come from? In the absence of expert domain knowledge, a tempting strategy is to use the ``kitchen sink" approach and hope that the true features are included in a much larger set of potential features. In this paper we revisit linear MDPs from the perspective of feature selection. In a $k$-sparse linear MDP, there is an unknown subset $S \subset [d]$ of size $k$ containing all the relevant features, and the goal is to learn a near-optimal policy in only poly$(k,\log d)$ interactions with the environment. Our main result is the first polynomial-time algorithm for this problem. In contrast, earlier works either made prohibitively strong assumptions that obviated the need for exploration, or required solving computationally intractable optimization problems. Along the way we introduce the notion of an emulator: a succinct approximate representation of the transitions that suffices for computing certain Bellman backups. Since linear MDPs are a non-parametric model, it is not even obvious whether polynomial-sized emulators exist. We show that they do exist and can be computed efficiently via convex programming. As a corollary of our main result, we give an algorithm for learning a near-optimal policy in block MDPs whose decoding function is a low-depth decision tree; the algorithm runs in quasi-polynomial time and takes a polynomial number of samples. This can be seen as a reinforcement learning analogue of classic results in computational learning theory. Furthermore, it gives a natural model where improving the sample complexity via representation learning is computationally feasible.
Abstract:Recently Chen and Poor initiated the study of learning mixtures of linear dynamical systems. While linear dynamical systems already have wide-ranging applications in modeling time-series data, using mixture models can lead to a better fit or even a richer understanding of underlying subpopulations represented in the data. In this work we give a new approach to learning mixtures of linear dynamical systems that is based on tensor decompositions. As a result, our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories. Moreover our algorithm works in the challenging partially-observed setting. Our starting point is the simple but powerful observation that the classic Ho-Kalman algorithm is a close relative of modern tensor decomposition methods for learning latent variable models. This gives us a playbook for how to extend it to work with more complicated generative models.