Abstract:We investigate the age of information (AoI) in a scenario where energy-harvesting devices send status updates to a gateway following the slotted ALOHA protocol and receive no feedback. We let the devices adjust the transmission probabilities based on their current battery level. Using a Markovian analysis, we derive analytically the average AoI. We further provide an approximate analysis for accurate and easy-to-compute approximations of both the average AoI and the age-violation probability (AVP), i.e., the probability that the AoI exceeds a given threshold. We also analyze the average throughput. Via numerical results, we investigate two baseline strategies: transmit a new update whenever possible to exploit every opportunity to reduce the AoI, and transmit only when sufficient energy is available to increase the chance of successful decoding. The two strategies are beneficial for low and high update-generation rates, respectively. We show that an optimized policy that balances the two strategies outperforms them significantly in terms of both AoI metrics and throughput. Finally, we show the benefit of decoding multiple packets in a slot using successive interference cancellation and adapting the transmission probability based on both the current battery level and the time elapsed since the last transmission.
Abstract:Enabling real-time communication in Industrial Internet of Things (IIoT) networks is crucial to support autonomous, self-organized and re-configurable industrial automation for Industry 4.0 and the forthcoming Industry 5.0. In this paper, we consider a SIC-assisted real-time IIoT network, in which sensor nodes generate reports according to an event-generation probability that is specific for the monitored phenomena. The reports are delivered over a block-fading channel to a common Access Point (AP) in slotted ALOHA fashion, which leverages the imbalances in the received powers among the contending users and applies successive interference cancellation (SIC) to decode user packets from the collisions. We provide an extensive analytical treatment of the setup, deriving the Age of Information (AoI), throughput and deadline violation probability, when the AP has access to both the perfect as well as the imperfect channel-state information. We show that adopting SIC improves all the performance parameters with respect to the standard slotted ALOHA, as well as to an age-dependent access method. The analytical results agree with the simulation based ones, demonstrating that investing in the SIC capability at the receiver enables this simple access method to support timely and efficient information delivery in IIoT networks.
Abstract:We present our vision for a departure from the established way of architecting and assessing communication networks, by incorporating the semantics of information for communications and control in networked systems. We define semantics of information, not as the meaning of the messages, but as their significance, possibly within a real time constraint, relative to the purpose of the data exchange. We argue that research efforts must focus on laying the theoretical foundations of a redesign of the entire process of information generation, transmission and usage in unison by developing: advanced semantic metrics for communications and control systems; an optimal sampling theory combining signal sparsity and semantics, for real-time prediction, reconstruction and control under communication constraints and delays; semantic compressed sensing techniques for decision making and inference directly in the compressed domain; semantic-aware data generation, channel coding, feedback, multiple and random access schemes that reduce the volume of data and the energy consumption, increasing the number of supportable devices.