Alert button
Picture for Aman Srivastava

Aman Srivastava

Alert button

NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation

Dec 06, 2021
Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Rishabh Gupta, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, M. Yee, Jing Zhang, Yue Zhang

Figure 1 for NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Figure 2 for NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Figure 3 for NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Figure 4 for NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation

Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augmenter, a new participatory Python-based natural language augmentation framework which supports the creation of both transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of natural language tasks. We demonstrate the efficacy of NL-Augmenter by using several of its transformations to analyze the robustness of popular natural language models. The infrastructure, datacards and robustness analysis results are available publicly on the NL-Augmenter repository (\url{https://github.com/GEM-benchmark/NL-Augmenter}).

* 39 pages, repository at https://github.com/GEM-benchmark/NL-Augmenter 
Viaarxiv icon

Intent Detection for code-mix utterances in task oriented dialogue systems

Dec 07, 2018
Pratik Jayarao, Aman Srivastava

Figure 1 for Intent Detection for code-mix utterances in task oriented dialogue systems
Figure 2 for Intent Detection for code-mix utterances in task oriented dialogue systems
Figure 3 for Intent Detection for code-mix utterances in task oriented dialogue systems

Intent detection is an essential component of task oriented dialogue systems. Over the years, extensive research has been conducted resulting in many state of the art models directed towards resolving user's intents in dialogue. A variety of vector representations foruser utterances have been explored for the same. However, these models and vectorization approaches have more so been evaluated in a single language environment. Dialogude systems generally have to deal with queries in different languages. We thus conduct experiments across combinations of models and various vectors representations for Code Mix as well as multi language utterances and evaluate how these models scale to a multi language environment. Our aim is to find the best suitable combination of vector representation and models for the process of intent detection for Code Mix utterances. we have evaluated the experiments on two different datasets consisting of only Code Mix utterances and the other dataset consisting of English, Hindi and Code Mix English Hindi utterances.

* 5 Pages, Accepted at 2018 Third International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT) 14-15,December 2018 (IEEE) 
Viaarxiv icon

Exploring the importance of context and embeddings in neural NER models for task-oriented dialogue systems

Dec 06, 2018
Pratik Jayarao, Chirag Jain, Aman Srivastava

Figure 1 for Exploring the importance of context and embeddings in neural NER models for task-oriented dialogue systems
Figure 2 for Exploring the importance of context and embeddings in neural NER models for task-oriented dialogue systems

Named Entity Recognition (NER), a classic sequence labelling task, is an essential component of natural language understanding (NLU) systems in task-oriented dialog systems for slot filling. For well over a decade, different methods from lookup using gazetteers and domain ontology, classifiers over handcrafted features to end-to-end systems involving neural network architectures have been evaluated mostly in language-independent non-conversational settings. In this paper, we evaluate a modified version of the recent state of the art neural architecture in a conversational setting where messages are often short and noisy. We perform an array of experiments with different combinations of including the previous utterance in the dialogue as a source of additional features and using word and character level embeddings trained on a larger external corpus. All methods are evaluated on a combined dataset formed from two public English task-oriented conversational datasets belonging to travel and restaurant domains respectively. For additional evaluation, we also repeat some of our experiments after adding automatically translated and transliterated (from translated) versions to the English only dataset.

* 6 Pages Accepted at International Conference on Natural Language Processing (2018) - (ACL) 
Viaarxiv icon