Abstract:Transformers operate as horizontal token-by-token scanners; at each generation step, the model attends to an ever-growing sequence of token-level states. This access pattern increases prefill latency and makes long-context decoding increasingly memory-bound, as KV-cache reads and writes dominate inference throughput rather than arithmetic computation. We propose Parallel Hierarchical Operation for Top-down Networks (PHOTON), a hierarchical autoregressive model that replaces flat scanning with vertical, multi-resolution context access. PHOTON maintains a hierarchy of latent streams: a bottom-up encoder progressively compresses tokens into low-rate contextual states, while lightweight top-down decoders reconstruct fine-grained token representations. Experimental results show that PHOTON is superior to competitive Transformer-based language models regarding the throughput-quality trade-off, offering significant advantages in long-context and multi-query tasks. This reduces decode-time KV-cache traffic, yielding up to $10^{3}\times$ higher throughput per unit memory.




Abstract:The training data distribution is often biased towards objects in certain orientations and illumination conditions. While humans have a remarkable capability of recognizing objects in out-of-distribution (OoD) orientations and illuminations, Deep Neural Networks (DNNs) severely suffer in this case, even when large amounts of training examples are available. In this paper, we investigate three different approaches to improve DNNs in recognizing objects in OoD orientations and illuminations. Namely, these are (i) training much longer after convergence of the in-distribution (InD) validation accuracy, i.e., late-stopping, (ii) tuning the momentum parameter of the batch normalization layers, and (iii) enforcing invariance of the neural activity in an intermediate layer to orientation and illumination conditions. Each of these approaches substantially improves the DNN's OoD accuracy (more than 20% in some cases). We report results in four datasets: two datasets are modified from the MNIST and iLab datasets, and the other two are novel (one of 3D rendered cars and another of objects taken from various controlled orientations and illumination conditions). These datasets allow to study the effects of different amounts of bias and are challenging as DNNs perform poorly in OoD conditions. Finally, we demonstrate that even though the three approaches focus on different aspects of DNNs, they all tend to lead to the same underlying neural mechanism to enable OoD accuracy gains -- individual neurons in the intermediate layers become more selective to a category and also invariant to OoD orientations and illuminations.




Abstract:Most graph neural network architectures work by message-passing node vector embeddings over the adjacency matrix, and it is assumed that they capture graph topology by doing that. We design two synthetic tasks, focusing purely on topological problems -- triangle detection and clique distance -- on which graph neural networks perform surprisingly badly, failing to detect those "bermuda" triangles. Datasets and their generation scripts are publicly available on github.com/FujitsuLaboratories/bermudatriangles and dataset.labs.fujitsu.com.