University of Texas at Arlington
Abstract:Vision-language models (VLMs) demonstrate impressive zero-shot and few-shot learning capabilities, making them essential for several downstream tasks. However, fine-tuning these models at scale remains challenging, particularly in federated environments where data is decentralized and non-iid across clients. Existing parameter-efficient tuning methods like LoRA (Low-Rank Adaptation) reduce computational overhead but struggle with heterogeneous client data, leading to suboptimal generalization. To address these challenges, we propose FedVLM, a federated LoRA fine-tuning framework that enables decentralized adaptation of VLMs while preserving model privacy and reducing reliance on centralized training. To further tackle data heterogeneity, we introduce personalized LoRA (pLoRA), which dynamically adapts LoRA parameters to each client's unique data distribution, significantly improving local adaptation while maintaining global model aggregation. Experiments on the RLAIF-V dataset show that pLoRA improves client-specific performance by 24.5% over standard LoRA, demonstrating superior adaptation in non-iid settings. FedVLM provides a scalable and efficient solution for fine-tuning VLMs in federated settings, advancing personalized adaptation in distributed learning scenarios.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing (NLP) tasks, such as question-answering, sentiment analysis, text summarization, and machine translation. However, the ever-growing complexity of LLMs demands immense computational resources, hindering the broader research and application of these models. To address this, various parameter-efficient fine-tuning strategies, such as Low-Rank Approximation (LoRA) and Adapters, have been developed. Despite their potential, these methods often face limitations in compressibility. Specifically, LoRA struggles to scale effectively with the increasing number of trainable parameters in modern large scale LLMs. Additionally, Low-Rank Economic Tensor-Train Adaptation (LoRETTA), which utilizes tensor train decomposition, has not yet achieved the level of compression necessary for fine-tuning very large scale models with limited resources. This paper introduces Tensor Train Low-Rank Approximation (TT-LoRA), a novel parameter-efficient fine-tuning (PEFT) approach that extends LoRETTA with optimized tensor train (TT) decomposition integration. By eliminating Adapters and traditional LoRA-based structures, TT-LoRA achieves greater model compression without compromising downstream task performance, along with reduced inference latency and computational overhead. We conduct an exhaustive parameter search to establish benchmarks that highlight the trade-off between model compression and performance. Our results demonstrate significant compression of LLMs while maintaining comparable performance to larger models, facilitating their deployment on resource-constraint platforms.