University of Texas at Arlington
Abstract:Knowledge distillation (KD) techniques have emerged as a powerful tool for transferring expertise from complex teacher models to lightweight student models, particularly beneficial for deploying high-performance models in resource-constrained devices. This approach has been successfully applied to graph neural networks (GNNs), harnessing their expressive capabilities to generate node embeddings that capture structural and feature-related information. In this study, we depart from the conventional KD approach by exploring the potential of collaborative learning among GNNs. In the absence of a pre-trained teacher model, we show that relatively simple and shallow GNN architectures can synergetically learn efficient models capable of performing better during inference, particularly in tackling multiple tasks. We propose a collaborative learning framework where ensembles of student GNNs mutually teach each other throughout the training process. We introduce an adaptive logit weighting unit to facilitate efficient knowledge exchange among models and an entropy enhancement technique to improve mutual learning. These components dynamically empower the models to adapt their learning strategies during training, optimizing their performance for downstream tasks. Extensive experiments conducted on three datasets each for node and graph classification demonstrate the effectiveness of our approach.
Abstract:Vision-language models (VLMs) demonstrate impressive zero-shot and few-shot learning capabilities, making them essential for several downstream tasks. However, fine-tuning these models at scale remains challenging, particularly in federated environments where data is decentralized and non-iid across clients. Existing parameter-efficient tuning methods like LoRA (Low-Rank Adaptation) reduce computational overhead but struggle with heterogeneous client data, leading to suboptimal generalization. To address these challenges, we propose FedVLM, a federated LoRA fine-tuning framework that enables decentralized adaptation of VLMs while preserving model privacy and reducing reliance on centralized training. To further tackle data heterogeneity, we introduce personalized LoRA (pLoRA), which dynamically adapts LoRA parameters to each client's unique data distribution, significantly improving local adaptation while maintaining global model aggregation. Experiments on the RLAIF-V dataset show that pLoRA improves client-specific performance by 24.5% over standard LoRA, demonstrating superior adaptation in non-iid settings. FedVLM provides a scalable and efficient solution for fine-tuning VLMs in federated settings, advancing personalized adaptation in distributed learning scenarios.