University of Texas at Arlington
Abstract:Vision-language models (VLMs) demonstrate impressive zero-shot and few-shot learning capabilities, making them essential for several downstream tasks. However, fine-tuning these models at scale remains challenging, particularly in federated environments where data is decentralized and non-iid across clients. Existing parameter-efficient tuning methods like LoRA (Low-Rank Adaptation) reduce computational overhead but struggle with heterogeneous client data, leading to suboptimal generalization. To address these challenges, we propose FedVLM, a federated LoRA fine-tuning framework that enables decentralized adaptation of VLMs while preserving model privacy and reducing reliance on centralized training. To further tackle data heterogeneity, we introduce personalized LoRA (pLoRA), which dynamically adapts LoRA parameters to each client's unique data distribution, significantly improving local adaptation while maintaining global model aggregation. Experiments on the RLAIF-V dataset show that pLoRA improves client-specific performance by 24.5% over standard LoRA, demonstrating superior adaptation in non-iid settings. FedVLM provides a scalable and efficient solution for fine-tuning VLMs in federated settings, advancing personalized adaptation in distributed learning scenarios.
Abstract:Autonomous vehicles (AVs) rely on deep neural networks (DNNs) for critical tasks such as traffic sign recognition (TSR), automated lane centering (ALC), and vehicle detection (VD). However, these models are vulnerable to attacks that can cause misclassifications and compromise safety. Traditional defense mechanisms, including adversarial training, often degrade benign accuracy and fail to generalize against unseen attacks. In this work, we introduce Vehicle Vision Language Models (V2LMs), fine-tuned vision-language models specialized for AV perception. Our findings demonstrate that V2LMs inherently exhibit superior robustness against unseen attacks without requiring adversarial training, maintaining significantly higher accuracy than conventional DNNs under adversarial conditions. We evaluate two deployment strategies: Solo Mode, where individual V2LMs handle specific perception tasks, and Tandem Mode, where a single unified V2LM is fine-tuned for multiple tasks simultaneously. Experimental results reveal that DNNs suffer performance drops of 33% to 46% under attacks, whereas V2LMs maintain adversarial accuracy with reductions of less than 8% on average. The Tandem Mode further offers a memory-efficient alternative while achieving comparable robustness to Solo Mode. We also explore integrating V2LMs as parallel components to AV perception to enhance resilience against adversarial threats. Our results suggest that V2LMs offer a promising path toward more secure and resilient AV perception systems.