Abstract:Tasks such as solving arithmetic equations, evaluating truth tables, and completing syllogisms are handled well by large language models (LLMs) in their standard form, but they often fail when the same problems are posed in logically equivalent yet obfuscated formats. To study this vulnerability, we introduce Logifus, a structure-preserving logical obfuscation framework, and, utilizing this, we present LogiQAte, a first-of-its-kind diagnostic benchmark with 1,108 questions across four reasoning tasks: (i) Obfus FOL (first-order logic entailment under equivalence-preserving rewrites), (ii) Obfus Blood Relation (family-graph entailment under indirect relational chains), (iii) Obfus Number Series (pattern induction under symbolic substitutions), and (iv) Obfus Direction Sense (navigation reasoning under altered directions and reference frames). Across all the tasks, evaluating six state-of-the-art models, we find that obfuscation severely degrades zero-shot performance, with performance dropping on average by 47% for GPT-4o, 27% for GPT-5, and 22% for reasoning model, o4-mini. Our findings reveal that current LLMs parse questions without deep understanding, highlighting the urgency of building models that genuinely comprehend and preserve meaning beyond surface form.
Abstract:This paper presents an early exploration of reinforcement learning methodologies for legal AI in the Indian context. We introduce Reinforcement Learning-based Legal Reasoning (ReGal), a framework that integrates Multi-Task Instruction Tuning with Reinforcement Learning from AI Feedback (RLAIF) using Proximal Policy Optimization (PPO). Our approach is evaluated across two critical legal tasks: (i) Court Judgment Prediction and Explanation (CJPE), and (ii) Legal Document Summarization. Although the framework underperforms on standard evaluation metrics compared to supervised and proprietary models, it provides valuable insights into the challenges of applying RL to legal texts. These challenges include reward model alignment, legal language complexity, and domain-specific adaptation. Through empirical and qualitative analysis, we demonstrate how RL can be repurposed for high-stakes, long-document tasks in law. Our findings establish a foundation for future work on optimizing legal reasoning pipelines using reinforcement learning, with broader implications for building interpretable and adaptive legal AI systems.
Abstract:The rapid proliferation of Large Language Models (LLMs) has significantly contributed to the development of equitable AI systems capable of factual question-answering (QA). However, no known study tests the LLMs' robustness when presented with obfuscated versions of questions. To systematically evaluate these limitations, we propose a novel technique, ObfusQAte and, leveraging the same, introduce ObfusQA, a comprehensive, first of its kind, framework with multi-tiered obfuscation levels designed to examine LLM capabilities across three distinct dimensions: (i) Named-Entity Indirection, (ii) Distractor Indirection, and (iii) Contextual Overload. By capturing these fine-grained distinctions in language, ObfusQA provides a comprehensive benchmark for evaluating LLM robustness and adaptability. Our study observes that LLMs exhibit a tendency to fail or generate hallucinated responses when confronted with these increasingly nuanced variations. To foster research in this direction, we make ObfusQAte publicly available.




Abstract:Mental manipulation is a subtle yet pervasive form of abuse in interpersonal communication, making its detection critical for safeguarding potential victims. However, due to manipulation's nuanced and context-specific nature, identifying manipulative language in complex, multi-turn, and multi-person conversations remains a significant challenge for large language models (LLMs). To address this gap, we introduce the MultiManip dataset, comprising 220 multi-turn, multi-person dialogues balanced between manipulative and non-manipulative interactions, all drawn from reality shows that mimic real-world scenarios. For manipulative interactions, it includes 11 distinct manipulations depicting real-life scenarios. We conduct extensive evaluations of state-of-the-art LLMs, such as GPT-4o and Llama-3.1-8B, employing various prompting strategies. Despite their capabilities, these models often struggle to detect manipulation effectively. To overcome this limitation, we propose SELF-PERCEPT, a novel, two-stage prompting framework inspired by Self-Perception Theory, demonstrating strong performance in detecting multi-person, multi-turn mental manipulation. Our code and data are publicly available at https://github.com/danushkhanna/self-percept .