Abstract:Tasks such as solving arithmetic equations, evaluating truth tables, and completing syllogisms are handled well by large language models (LLMs) in their standard form, but they often fail when the same problems are posed in logically equivalent yet obfuscated formats. To study this vulnerability, we introduce Logifus, a structure-preserving logical obfuscation framework, and, utilizing this, we present LogiQAte, a first-of-its-kind diagnostic benchmark with 1,108 questions across four reasoning tasks: (i) Obfus FOL (first-order logic entailment under equivalence-preserving rewrites), (ii) Obfus Blood Relation (family-graph entailment under indirect relational chains), (iii) Obfus Number Series (pattern induction under symbolic substitutions), and (iv) Obfus Direction Sense (navigation reasoning under altered directions and reference frames). Across all the tasks, evaluating six state-of-the-art models, we find that obfuscation severely degrades zero-shot performance, with performance dropping on average by 47% for GPT-4o, 27% for GPT-5, and 22% for reasoning model, o4-mini. Our findings reveal that current LLMs parse questions without deep understanding, highlighting the urgency of building models that genuinely comprehend and preserve meaning beyond surface form.
Abstract:The rapid proliferation of Large Language Models (LLMs) has significantly contributed to the development of equitable AI systems capable of factual question-answering (QA). However, no known study tests the LLMs' robustness when presented with obfuscated versions of questions. To systematically evaluate these limitations, we propose a novel technique, ObfusQAte and, leveraging the same, introduce ObfusQA, a comprehensive, first of its kind, framework with multi-tiered obfuscation levels designed to examine LLM capabilities across three distinct dimensions: (i) Named-Entity Indirection, (ii) Distractor Indirection, and (iii) Contextual Overload. By capturing these fine-grained distinctions in language, ObfusQA provides a comprehensive benchmark for evaluating LLM robustness and adaptability. Our study observes that LLMs exhibit a tendency to fail or generate hallucinated responses when confronted with these increasingly nuanced variations. To foster research in this direction, we make ObfusQAte publicly available.