Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

We study the problem of learning under arbitrary distribution shift, where the learner is trained on a labeled set from one distribution but evaluated on a different, potentially adversarially generated test distribution. We focus on two frameworks: PQ learning [Goldwasser, A. Kalai, Y. Kalai, Montasser NeurIPS 2020], allowing abstention on adversarially generated parts of the test distribution, and TDS learning [Klivans, Stavropoulos, Vasilyan COLT 2024], permitting abstention on the entire test distribution if distribution shift is detected. All prior known algorithms either rely on learning primitives that are computationally hard even for simple function classes, or end up abstaining entirely even in the presence of a tiny amount of distribution shift. We address both these challenges for natural function classes, including intersections of halfspaces and decision trees, and standard training distributions, including Gaussians. For PQ learning, we give efficient learning algorithms, while for TDS learning, our algorithms can tolerate moderate amounts of distribution shift. At the core of our approach is an improved analysis of spectral outlier-removal techniques from learning with nasty noise. Our analysis can (1) handle arbitrarily large fraction of outliers, which is crucial for handling arbitrary distribution shifts, and (2) obtain stronger bounds on polynomial moments of the distribution after outlier removal, yielding new insights into polynomial regression under distribution shifts. Lastly, our techniques lead to novel results for tolerant testable learning [Rubinfeld and Vasilyan STOC 2023], and learning with nasty noise.

Via

In order to circumvent statistical and computational hardness results in sequential decision-making, recent work has considered smoothed online learning, where the distribution of data at each time is assumed to have bounded likeliehood ratio with respect to a base measure when conditioned on the history. While previous works have demonstrated the benefits of smoothness, they have either assumed that the base measure is known to the learner or have presented computationally inefficient algorithms applying only in special cases. This work investigates the more general setting where the base measure is \emph{unknown} to the learner, focusing in particular on the performance of Empirical Risk Minimization (ERM) with square loss when the data are well-specified and smooth. We show that in this setting, ERM is able to achieve sublinear error whenever a class is learnable with iid data; in particular, ERM achieves error scaling as $\tilde O( \sqrt{\mathrm{comp}(\mathcal F)\cdot T} )$, where $\mathrm{comp}(\mathcal F)$ is the statistical complexity of learning $\mathcal F$ with iid data. In so doing, we prove a novel norm comparison bound for smoothed data that comprises the first sharp norm comparison for dependent data applying to arbitrary, nonlinear function classes. We complement these results with a lower bound indicating that our analysis of ERM is essentially tight, establishing a separation in the performance of ERM between smoothed and iid data.

Via

Due to statistical lower bounds on the learnability of many function classes under privacy constraints, there has been recent interest in leveraging public data to improve the performance of private learning algorithms. In this model, algorithms must always guarantee differential privacy with respect to the private samples while also ensuring learning guarantees when the private data distribution is sufficiently close to that of the public data. Previous work has demonstrated that when sufficient public, unlabelled data is available, private learning can be made statistically tractable, but the resulting algorithms have all been computationally inefficient. In this work, we present the first computationally efficient, algorithms to provably leverage public data to learn privately whenever a function class is learnable non-privately, where our notion of computational efficiency is with respect to the number of calls to an optimization oracle for the function class. In addition to this general result, we provide specialized algorithms with improved sample complexities in the special cases when the function class is convex or when the task is binary classification.

Via

Consider the supervised learning setting where the goal is to learn to predict labels $\mathbf y$ given points $\mathbf x$ from a distribution. An \textit{omnipredictor} for a class $\mathcal L$ of loss functions and a class $\mathcal C$ of hypotheses is a predictor whose predictions incur less expected loss than the best hypothesis in $\mathcal C$ for every loss in $\mathcal L$. Since the work of [GKR+21] that introduced the notion, there has been a large body of work in the setting of binary labels where $\mathbf y \in \{0, 1\}$, but much less is known about the regression setting where $\mathbf y \in [0,1]$ can be continuous. Our main conceptual contribution is the notion of \textit{sufficient statistics} for loss minimization over a family of loss functions: these are a set of statistics about a distribution such that knowing them allows one to take actions that minimize the expected loss for any loss in the family. The notion of sufficient statistics relates directly to the approximate rank of the family of loss functions. Our key technical contribution is a bound of $O(1/\varepsilon^{2/3})$ on the $\epsilon$-approximate rank of convex, Lipschitz functions on the interval $[0,1]$, which we show is tight up to a factor of $\mathrm{polylog} (1/\epsilon)$. This yields improved runtimes for learning omnipredictors for the class of all convex, Lipschitz loss functions under weak learnability assumptions about the class $\mathcal C$. We also give efficient omnipredictors when the loss families have low-degree polynomial approximations, or arise from generalized linear models (GLMs). This translation from sufficient statistics to faster omnipredictors is made possible by lifting the technique of loss outcome indistinguishability introduced by [GKH+23] for Boolean labels to the regression setting.

Via

A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called $\sigma$-smooth Nash equilibrium, for a smoothness parameter $\sigma$. In a $\sigma$-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a $\sigma$-smooth strategy, which is a distribution that does not put too much mass (as parametrized by $\sigma$) on any fixed action. We distinguish two variants of $\sigma$-smooth Nash equilibria: strong $\sigma$-smooth Nash equilibria, in which players are required to play $\sigma$-smooth strategies under equilibrium play, and weak $\sigma$-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong $\sigma$-smooth Nash equilibria have superior computational properties to Nash equilibria: when $\sigma$ as well as an approximation parameter $\epsilon$ and the number of players are all constants, there is a constant-time randomized algorithm to find a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing $\epsilon$-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time. We complement our upper bounds by showing that when either $\sigma$ or $\epsilon$ is an inverse polynomial, finding a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibria becomes computationally intractable.

Via

We study the problem of sequential prediction in the stochastic setting with an adversary that is allowed to inject clean-label adversarial (or out-of-distribution) examples. Algorithms designed to handle purely stochastic data tend to fail in the presence of such adversarial examples, often leading to erroneous predictions. This is undesirable in many high-stakes applications such as medical recommendations, where abstaining from predictions on adversarial examples is preferable to misclassification. On the other hand, assuming fully adversarial data leads to very pessimistic bounds that are often vacuous in practice. To capture this motivation, we propose a new model of sequential prediction that sits between the purely stochastic and fully adversarial settings by allowing the learner to abstain from making a prediction at no cost on adversarial examples. Assuming access to the marginal distribution on the non-adversarial examples, we design a learner whose error scales with the VC dimension (mirroring the stochastic setting) of the hypothesis class, as opposed to the Littlestone dimension which characterizes the fully adversarial setting. Furthermore, we design a learner for VC dimension~1 classes, which works even in the absence of access to the marginal distribution. Our key technical contribution is a novel measure for quantifying uncertainty for learning VC classes, which may be of independent interest.

Via

In statistical learning theory, determining the sample complexity of realizable binary classification for VC classes was a long-standing open problem. The results of Simon and Hanneke established sharp upper bounds in this setting. However, the reliance of their argument on the uniform convergence principle limits its applicability to more general learning settings such as multiclass classification. In this paper, we address this issue by providing optimal high probability risk bounds through a framework that surpasses the limitations of uniform convergence arguments. Our framework converts the leave-one-out error of permutation invariant predictors into high probability risk bounds. As an application, by adapting the one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth, we propose an algorithm that achieves an optimal PAC bound for binary classification. Specifically, our result shows that certain aggregations of one-inclusion graph algorithms are optimal, addressing a variant of a classic question posed by Warmuth. We further instantiate our framework in three settings where uniform convergence is provably suboptimal. For multiclass classification, we prove an optimal risk bound that scales with the one-inclusion hypergraph density of the class, addressing the suboptimality of the analysis of Daniely and Shalev-Shwartz. For partial hypothesis classification, we determine the optimal sample complexity bound, resolving a question posed by Alon, Hanneke, Holzman, and Moran. For realizable bounded regression with absolute loss, we derive an optimal risk bound that relies on a modified version of the scale-sensitive dimension, refining the results of Bartlett and Long. Our rates surpass standard uniform convergence-based results due to the smaller complexity measure in our risk bound.

Via

We initiate the study of smoothed analysis for the sequential probability assignment problem with contexts. We study information-theoretically optimal minmax rates as well as a framework for algorithmic reduction involving the maximum likelihood estimator oracle. Our approach establishes a general-purpose reduction from minimax rates for sequential probability assignment for smoothed adversaries to minimax rates for transductive learning. This leads to optimal (logarithmic) fast rates for parametric classes and classes with finite VC dimension. On the algorithmic front, we develop an algorithm that efficiently taps into the MLE oracle, for general classes of functions. We show that under general conditions this algorithmic approach yields sublinear regret.

Via

We study the problem of progressive distillation: Given a large, pre-trained teacher model $g$, we seek to decompose the model into an ensemble of smaller, low-inference cost student models $f_i$. The resulting ensemble allows for flexibly tuning accuracy vs. inference cost, which is useful for a number of applications in on-device inference. The method we propose, B-DISTIL, relies on an algorithmic procedure that uses function composition over intermediate activations to construct expressive ensembles with similar performance as $g$, but with much smaller student models. We demonstrate the effectiveness of \algA by decomposing pretrained models across standard image, speech, and sensor datasets. We also provide theoretical guarantees for our method in terms of convergence and generalization.

Via

The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov's inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes. Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.

Via