Abstract:With the growing emphasis on multilingual and cultural evaluation benchmarks for large language models, language and culture are often treated as synonymous, and performance is commonly used as a proxy for a models understanding of a given language. In this work, we argue that such evaluations overlook meaningful cultural variation that exists within a single language. We address this gap by focusing on narratives from different regions of Ethiopia and demonstrate that, despite shared linguistic characteristics, region-specific and domain-specific content substantially influences language evaluation outcomes. To this end, we introduce \textbf{\textit{AmharicStoryQA}}, a long-sequence story question answering benchmark grounded in culturally diverse narratives from Amharic-speaking regions. Using this benchmark, we reveal a significant narrative understanding gap in existing LLMs, highlight pronounced regional differences in evaluation results, and show that supervised fine-tuning yields uneven improvements across regions and evaluation settings. Our findings emphasize the need for culturally grounded benchmarks that go beyond language-level evaluation to more accurately assess and improve narrative understanding in low-resource languages.