Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
This paper presents an end-to-end suite for multilingual information extraction and processing from image-based documents. The system uses Optical Character Recognition (Tesseract) to extract text in languages such as English, Hindi, and Tamil, and then a pipeline involving large language model APIs (Gemini) for cross-lingual translation, abstractive summarization, and re-translation into a target language. Additional modules add sentiment analysis (TensorFlow), topic classification (Transformers), and date extraction (Regex) for better document comprehension. Made available in an accessible Gradio interface, the current research shows a real-world application of libraries, models, and APIs to close the language gap and enhance access to information in image media across different linguistic environments
While transformer-based models achieve strong performance on text classification, we explore whether masking input tokens can further enhance their effectiveness. We propose token masking regularization, a simple yet theoretically motivated method that randomly replaces input tokens with a special [MASK] token at probability p. This introduces stochastic perturbations during training, leading to implicit gradient averaging that encourages the model to capture deeper inter-token dependencies. Experiments on language identification and sentiment analysis -- across diverse models (mBERT, Qwen2.5-0.5B, TinyLlama-1.1B) -- show consistent improvements over standard regularization techniques. We identify task-specific optimal masking rates, with p = 0.1 as a strong general default. We attribute the gains to two key effects: (1) input perturbation reduces overfitting, and (2) gradient-level smoothing acts as implicit ensembling.
Public product launches in Artificial Intelligence can serve as focusing events for collective attention, surfacing how societies react to technological change. Social media provide a window into the sensemaking around these events, surfacing hopes and fears and showing who chooses to engage in the discourse and when. We demonstrate that public sensemaking about AI is shaped by economic interests and cultural values of those involved. We analyze 3.8 million tweets posted by 1.6 million users across 117 countries in response to the public launch of ChatGPT in 2022. Our analysis shows how economic self-interest, proxied by occupational skill types in writing, programming, and mathematics, and national cultural orientations, as measured by Hofstede's individualism, uncertainty avoidance, and power distance dimensions, shape who speaks, when they speak, and their stance towards ChatGPT. Roles requiring more technical skills, such as programming and mathematics, tend to engage earlier and express more positive stances, whereas writing-centric occupations join later with greater skepticism. At the cultural level, individualism predicts both earlier engagement and a more negative stance, and uncertainty avoidance reduces the prevalence of positive stances but does not delay when users first engage with ChatGPT. Aggregate sentiment trends mask the dynamics observed in our study. The shift toward a more critical stance towards ChatGPT over time stems primarily from the entry of more skeptical voices rather than a change of heart among early adopters. Our findings underscore the importance of both the occupational background and cultural context in understanding public reactions to AI.
We introduce \textbf{LAMP} (\textbf{L}inear \textbf{A}ttribution \textbf{M}apping \textbf{P}robe), a method that shines light onto a black-box language model's decision surface and studies how reliably a model maps its stated reasons to its predictions through a locally linear model approximating the decision surface. LAMP treats the model's own self-reported explanations as a coordinate system and fits a locally linear surrogate that links those weights to the model's output. By doing so, it reveals which stated factors steer the model's decisions, and by how much. We apply LAMP to three tasks: \textit{sentiment analysis}, \textit{controversial-topic detection}, and \textit{safety-prompt auditing}. Across these tasks, LAMP reveals that many LLMs exhibit locally linear decision landscapes. In addition, these surfaces correlate with human judgments on explanation quality and, on a clinical case-file data set, aligns with expert assessments. Since LAMP operates without requiring access to model gradients, logits, or internal activations, it serves as a practical and lightweight framework for auditing proprietary language models, and enabling assessment of whether a model behaves consistently with the explanations it provides.
We explore the use of Chain-of-Thought (CoT) prompting with large language models (LLMs) to improve the accuracy of granular sentiment categorization in app store reviews. Traditional numeric and polarity-based ratings often fail to capture the nuanced sentiment embedded in user feedback. We evaluated the effectiveness of CoT prompting versus simple prompting on 2000 Amazon app reviews by comparing each method's predictions to human judgements. CoT prompting improved classification accuracy from 84% to 93% highlighting the benefit of explicit reasoning in enhancing sentiment analysis performance.




This study explores a novel approach to predicting key bug-related outcomes, including the time to resolution, time to fix, and ultimate status of a bug, using data from the Bugzilla Eclipse Project. Specifically, we leverage features available before a bug is resolved to enhance predictive accuracy. Our methodology incorporates sentiment analysis to derive both an emotionality score and a sentiment classification (positive or negative). Additionally, we integrate the bug's priority level and its topic, extracted using a BERTopic model, as features for a Convolutional Neural Network (CNN) and a Multilayer Perceptron (MLP). Our findings indicate that the combination of BERTopic and sentiment analysis can improve certain model performance metrics. Furthermore, we observe that balancing model inputs enhances practical applicability, albeit at the cost of a significant reduction in accuracy in most cases. To address our primary objectives, predicting time-to-resolution, time-to-fix, and bug destiny, we employ both binary classification and exact time value predictions, allowing for a comparative evaluation of their predictive effectiveness. Results demonstrate that sentiment analysis serves as a valuable predictor of a bug's eventual outcome, particularly in determining whether it will be fixed. However, its utility is less pronounced when classifying bugs into more complex or unconventional outcome categories.
Internet penetration rates in Africa are rising steadily, and mobile Internet is getting an even bigger boost with the availability of smartphones. Young people are increasingly using the Internet, especially social networks, and Senegal is no exception to this revolution. Social networks have become the main means of expression for young people. Despite this evolution in Internet access, there are few operators on the market, which limits the alternatives available in terms of value for money. In this paper, we will look at how young people feel about the price of mobile Internet in Senegal, in relation to the perceived quality of the service, through their comments on social networks. We scanned a set of Twitter and Facebook comments related to the subject and applied a sentiment analysis model to gather their general feelings.
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
Political biases encoded by LLMs might have detrimental effects on downstream applications. Existing bias analysis methods rely on small-size intermediate tasks (questionnaire answering or political content generation) and rely on the LLMs themselves for analysis, thus propagating bias. We propose a new approach leveraging the observation that LLM sentiment predictions vary with the target entity in the same sentence. We define an entropy-based inconsistency metric to encode this prediction variability. We insert 1319 demographically and politically diverse politician names in 450 political sentences and predict target-oriented sentiment using seven models in six widely spoken languages. We observe inconsistencies in all tested combinations and aggregate them in a statistically robust analysis at different granularity levels. We observe positive and negative bias toward left and far-right politicians and positive correlations between politicians with similar alignment. Bias intensity is higher for Western languages than for others. Larger models exhibit stronger and more consistent biases and reduce discrepancies between similar languages. We partially mitigate LLM unreliability in target-oriented sentiment classification (TSC) by replacing politician names with fictional but plausible counterparts.
Named Entity Recognition NER is very crucial for various natural language processing applications, including information extraction, machine translation, and sentiment analysis. Despite the ever-increasing interest in African languages within computational linguistics, existing NER systems focus mainly on English, European, and a few other global languages, leaving a significant gap for under-resourced languages. This research presents the development of a WAZOBIA-NER system tailored for the three most prominent Nigerian languages: Hausa, Yoruba, and Igbo. This research begins with a comprehensive compilation of annotated datasets for each language, addressing data scarcity and linguistic diversity challenges. Exploring the state-of-the-art machine learning technique, Conditional Random Fields (CRF) and deep learning models such as Bidirectional Long Short-Term Memory (BiLSTM), Bidirectional Encoder Representation from Transformers (Bert) and fine-tune with a Recurrent Neural Network (RNN), the study evaluates the effectiveness of these approaches in recognizing three entities: persons, organizations, and locations. The system utilizes optical character recognition (OCR) technology to convert textual images into machine-readable text, thereby enabling the Wazobia system to accept both input text and textual images for extraction purposes. The system achieved a performance of 0.9511 in precision, 0.9400 in recall, 0.9564 in F1-score, and 0.9301 in accuracy. The model's evaluation was conducted across three languages, with precision, recall, F1-score, and accuracy as key assessment metrics. The Wazobia-NER system demonstrates that it is feasible to build robust NER tools for under-resourced African languages using current NLP frameworks and transfer learning.