What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Apr 17, 2025
Abstract:Internet penetration rates in Africa are rising steadily, and mobile Internet is getting an even bigger boost with the availability of smartphones. Young people are increasingly using the Internet, especially social networks, and Senegal is no exception to this revolution. Social networks have become the main means of expression for young people. Despite this evolution in Internet access, there are few operators on the market, which limits the alternatives available in terms of value for money. In this paper, we will look at how young people feel about the price of mobile Internet in Senegal, in relation to the perceived quality of the service, through their comments on social networks. We scanned a set of Twitter and Facebook comments related to the subject and applied a sentiment analysis model to gather their general feelings.
* 19 pages, 14 figures, 10th International Congress on Information and
Communication Technology (ICICT 2025)
Via

Apr 18, 2025
Abstract:Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
* 6 pages, 6 figures, 4 tables
Via

May 10, 2025
Abstract:Named Entity Recognition NER is very crucial for various natural language processing applications, including information extraction, machine translation, and sentiment analysis. Despite the ever-increasing interest in African languages within computational linguistics, existing NER systems focus mainly on English, European, and a few other global languages, leaving a significant gap for under-resourced languages. This research presents the development of a WAZOBIA-NER system tailored for the three most prominent Nigerian languages: Hausa, Yoruba, and Igbo. This research begins with a comprehensive compilation of annotated datasets for each language, addressing data scarcity and linguistic diversity challenges. Exploring the state-of-the-art machine learning technique, Conditional Random Fields (CRF) and deep learning models such as Bidirectional Long Short-Term Memory (BiLSTM), Bidirectional Encoder Representation from Transformers (Bert) and fine-tune with a Recurrent Neural Network (RNN), the study evaluates the effectiveness of these approaches in recognizing three entities: persons, organizations, and locations. The system utilizes optical character recognition (OCR) technology to convert textual images into machine-readable text, thereby enabling the Wazobia system to accept both input text and textual images for extraction purposes. The system achieved a performance of 0.9511 in precision, 0.9400 in recall, 0.9564 in F1-score, and 0.9301 in accuracy. The model's evaluation was conducted across three languages, with precision, recall, F1-score, and accuracy as key assessment metrics. The Wazobia-NER system demonstrates that it is feasible to build robust NER tools for under-resourced African languages using current NLP frameworks and transfer learning.
* 6 pages, 3 figures, 1 table
Via

Apr 26, 2025
Abstract:With the advance of large language models (LLMs), LLMs have been utilized for the various tasks. However, the issues of variability and reproducibility of results from each trial of LLMs have been largely overlooked in existing literature while actual human annotation uses majority voting to resolve disagreements among annotators. Therefore, this study introduces the straightforward ensemble strategy to a sentiment analysis using LLMs. As the results, we demonstrate that the ensemble of multiple inference using medium-sized LLMs produces more robust and accurate results than using a large model with a single attempt with reducing RMSE by 18.6%.
* This manuscript has been accepted for the 30th International
Conference on Natural Language & Information Systems (NLDB 2025). The final
version will appear in the Springer LNCS proceedings. arXiv admin note: text
overlap with arXiv:2407.13069
Via

May 02, 2025
Abstract:Multimodal Sentiment Analysis (MSA) is a rapidly developing field that integrates multimodal information to recognize sentiments, and existing models have made significant progress in this area. The central challenge in MSA is multimodal fusion, which is predominantly addressed by Multimodal Transformers (MulTs). Although act as the paradigm, MulTs suffer from efficiency concerns. In this work, from the perspective of efficiency optimization, we propose and prove that MulTs are hierarchical modal-wise heterogeneous graphs (HMHGs), and we introduce the graph-structured representation pattern of MulTs. Based on this pattern, we propose an Interlaced Mask (IM) mechanism to design the Graph-Structured and Interlaced-Masked Multimodal Transformer (GsiT). It is formally equivalent to MulTs which achieves an efficient weight-sharing mechanism without information disorder through IM, enabling All-Modal-In-One fusion with only 1/3 of the parameters of pure MulTs. A Triton kernel called Decomposition is implemented to ensure avoiding additional computational overhead. Moreover, it achieves significantly higher performance than traditional MulTs. To further validate the effectiveness of GsiT itself and the HMHG concept, we integrate them into multiple state-of-the-art models and demonstrate notable performance improvements and parameter reduction on widely used MSA datasets.
Via

May 03, 2025
Abstract:E-commerce platforms generate vast volumes of user feedback, such as star ratings, written reviews, and comments. However, most recommendation engines rely primarily on numerical scores, often overlooking the nuanced opinions embedded in free text. This paper comprehensively reviews sentiment-aware recommendation systems from a natural language processing perspective, covering advancements from 2023 to early 2025. It highlights the benefits of integrating sentiment analysis into e-commerce recommenders to enhance prediction accuracy and explainability through detailed opinion extraction. Our survey categorizes recent work into four main approaches: deep learning classifiers that combine sentiment embeddings with user item interactions, transformer based methods for nuanced feature extraction, graph neural networks that propagate sentiment signals, and conversational recommenders that adapt in real time to user feedback. We summarize model architectures and demonstrate how sentiment flows through recommendation pipelines, impacting dialogue-based suggestions. Key challenges include handling noisy or sarcastic text, dynamic user preferences, and bias mitigation. Finally, we outline research gaps and provide a roadmap for developing smarter, fairer, and more user-centric recommendation tools.
* 12 pages, 2 tables, 2 figures
Via

May 02, 2025
Abstract:In a world where technology is increasingly embedded in our everyday experiences, systems that sense and respond to human emotions are elevating digital interaction. At the intersection of artificial intelligence and human-computer interaction, affective computing is emerging with innovative solutions where machines are humanized by enabling them to process and respond to user emotions. This survey paper explores recent research contributions in affective computing applications in the area of emotion recognition, sentiment analysis and personality assignment developed using approaches like large language models (LLMs), multimodal techniques, and personalized AI systems. We analyze the key contributions and innovative methodologies applied by the selected research papers by categorizing them into four domains: AI chatbot applications, multimodal input systems, mental health and therapy applications, and affective computing for safety applications. We then highlight the technological strengths as well as the research gaps and challenges related to these studies. Furthermore, the paper examines the datasets used in each study, highlighting how modality, scale, and diversity impact the development and performance of affective models. Finally, the survey outlines ethical considerations and proposes future directions to develop applications that are more safe, empathetic and practical.
* 20 pages, 7 tables, 96 references. Survey paper on affective
computing applications using large language models, multimodal AI, and
therapeutic chatbots
Via

Jun 04, 2025
Abstract:High-Frequency Trading (HFT) is pivotal in cryptocurrency markets, demanding rapid decision-making. Social media platforms like Reddit offer valuable, yet underexplored, information for such high-frequency, short-term trading. This paper introduces \textbf{PulseReddit}, a novel dataset that is the first to align large-scale Reddit discussion data with high-frequency cryptocurrency market statistics for short-term trading analysis. We conduct an extensive empirical study using Large Language Model (LLM)-based Multi-Agent Systems (MAS) to investigate the impact of social sentiment from PulseReddit on trading performance. Our experiments conclude that MAS augmented with PulseReddit data achieve superior trading outcomes compared to traditional baselines, particularly in bull markets, and demonstrate robust adaptability across different market regimes. Furthermore, our research provides conclusive insights into the performance-efficiency trade-offs of different LLMs, detailing significant considerations for practical model selection in HFT applications. PulseReddit and our findings establish a foundation for advanced MAS research in HFT, demonstrating the tangible benefits of integrating social media.
Via

Apr 28, 2025
Abstract:Large Language Models (LLMs) are increasingly used in tasks such as psychological text analysis and decision-making in automated workflows. However, their reliability remains a concern due to potential biases inherited from their training process. In this study, we examine how different response format: binary versus continuous, may systematically influence LLMs' judgments. In a value statement judgments task and a text sentiment analysis task, we prompted LLMs to simulate human responses and tested both formats across several models, including both open-source and commercial models. Our findings revealed a consistent negative bias: LLMs were more likely to deliver "negative" judgments in binary formats compared to continuous ones. Control experiments further revealed that this pattern holds across both tasks. Our results highlight the importance of considering response format when applying LLMs to decision tasks, as small changes in task design can introduce systematic biases.
Via

Apr 16, 2025
Abstract:Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture.
Via
