Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
This project performs multimodal sentiment analysis using the CMU-MOSEI dataset, using transformer-based models with early fusion to integrate text, audio, and visual modalities. We employ BERT-based encoders for each modality, extracting embeddings that are concatenated before classification. The model achieves strong performance, with 97.87\% 7-class accuracy and a 0.9682 F1-score on the test set, demonstrating the effectiveness of early fusion in capturing cross-modal interactions. The training utilized Adam optimization (lr=1e-4), dropout (0.3), and early stopping to ensure generalization and robustness. Results highlight the superiority of transformer architectures in modeling multimodal sentiment, with a low MAE (0.1060) indicating precise sentiment intensity prediction. Future work may compare fusion strategies or enhance interpretability. This approach utilizes multimodal learning by effectively combining linguistic, acoustic, and visual cues for sentiment analysis.
In today's digitally-driven world, the demand for personalized and context-aware recommendations has never been greater. Traditional recommender systems have made significant strides in this direction, but they often lack the ability to tap into the richness of conversational data. This paper represents a novel approach to recommendation systems by integrating conversational insights into the recommendation process. The Conversational Recommender System integrates cutting-edge technologies such as deep learning, leveraging machine learning algorithms like Apriori for Association Rule Mining, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LTSM). Furthermore, sophisticated voice recognition technologies, including Hidden Markov Models (HMMs) and Dynamic Time Warping (DTW) algorithms, play a crucial role in accurate speech-to-text conversion, ensuring robust performance in diverse environments. The methodology incorporates a fusion of content-based and collaborative recommendation approaches, enhancing them with NLP techniques. This innovative integration ensures a more personalized and context-aware recommendation experience, particularly in marketing applications.
Bangla or Bengali is the national language of Bangladesh, people from different regions don't talk in proper Bangla. Every division of Bangladesh has its own local language like Sylheti, Chittagong etc. In recent years some papers were published on Bangla language like sentiment analysis, fake news detection and classifications, but a few of them were on Bangla languages. This research is for the local language and this particular paper is on Sylheti language. It presented a comprehensive system using Natural Language Processing or NLP techniques for translating Pure or Modern Bangla to locally spoken Sylheti Bangla language. Total 1200 data used for training 3 models LSTM, Bi-LSTM and Seq2Seq and LSTM scored the best in performance with 89.3% accuracy. The findings of this research may contribute to the growth of Bangla NLP researchers for future more advanced innovations.
Public product launches in Artificial Intelligence can serve as focusing events for collective attention, surfacing how societies react to technological change. Social media provide a window into the sensemaking around these events, surfacing hopes and fears and showing who chooses to engage in the discourse and when. We demonstrate that public sensemaking about AI is shaped by economic interests and cultural values of those involved. We analyze 3.8 million tweets posted by 1.6 million users across 117 countries in response to the public launch of ChatGPT in 2022. Our analysis shows how economic self-interest, proxied by occupational skill types in writing, programming, and mathematics, and national cultural orientations, as measured by Hofstede's individualism, uncertainty avoidance, and power distance dimensions, shape who speaks, when they speak, and their stance towards ChatGPT. Roles requiring more technical skills, such as programming and mathematics, tend to engage earlier and express more positive stances, whereas writing-centric occupations join later with greater skepticism. At the cultural level, individualism predicts both earlier engagement and a more negative stance, and uncertainty avoidance reduces the prevalence of positive stances but does not delay when users first engage with ChatGPT. Aggregate sentiment trends mask the dynamics observed in our study. The shift toward a more critical stance towards ChatGPT over time stems primarily from the entry of more skeptical voices rather than a change of heart among early adopters. Our findings underscore the importance of both the occupational background and cultural context in understanding public reactions to AI.
Financial sentiment analysis (FSA) presents unique challenges to LLMs that surpass those in typical sentiment analysis due to the nuanced language used in financial contexts. The prowess of these models is often undermined by the inherent subjectivity of sentiment classifications in existing benchmark datasets like Financial Phrasebank. These datasets typically feature undefined sentiment classes that reflect the highly individualized perspectives of annotators, leading to significant variability in annotations. This variability results in an unfair expectation for LLMs during benchmarking, where they are tasked to conjecture the subjective viewpoints of human annotators without sufficient context. In this paper, we introduce the Annotators' Instruction Assisted Prompt, a novel evaluation prompt designed to redefine the task definition of FSA for LLMs. By integrating detailed task instructions originally intended for human annotators into the LLMs' prompt framework, AIAP aims to standardize the understanding of sentiment across both human and machine interpretations, providing a fair and context-rich foundation for sentiment analysis. We utilize a new dataset, WSBS, derived from the WallStreetBets subreddit to demonstrate how AIAP significantly enhances LLM performance by aligning machine operations with the refined task definitions. Experimental results demonstrate that AIAP enhances LLM performance significantly, with improvements up to 9.08. This context-aware approach not only yields incremental gains in performance but also introduces an innovative sentiment-indexing method utilizing model confidence scores. This method enhances stock price prediction models and extracts more value from the financial sentiment analysis, underscoring the significance of WSB as a critical source of financial text. Our research offers insights into both improving FSA through better evaluation methods.
Social media platforms like X (formerly Twitter) play a crucial role in shaping public discourse and societal norms. This study examines the term Sessiz Istila (Silent Invasion) on Turkish social media, highlighting the rise of anti-refugee sentiment amidst the Syrian refugee influx. Using BERTurk and the TREMO dataset, we developed an advanced Emotion Recognition Model (ERM) tailored for Turkish, achieving 92.62% accuracy in categorizing emotions such as happiness, fear, anger, sadness, disgust, and surprise. By applying this model to large-scale X data, the study uncovers emotional nuances in Turkish discourse, contributing to computational social science by advancing sentiment analysis in underrepresented languages and enhancing our understanding of global digital discourse and the unique linguistic challenges of Turkish. The findings underscore the transformative potential of localized NLP tools, with our ERM model offering practical applications for real-time sentiment analysis in Turkish-language contexts. By addressing critical areas, including marketing, public relations, and crisis management, these models facilitate improved decision-making through timely and accurate sentiment tracking. This highlights the significance of advancing research that accounts for regional and linguistic nuances.
As Large Language Models (LLMs) are increasingly being adopted for narrow tasks - such as medical question answering or sentiment analysis - and deployed in resource-constrained settings, a key question arises: how many parameters does a task actually need? In this work, we present LLM-Sieve, the first comprehensive framework for task-specific pruning of LLMs that achieves 20-75% parameter reduction with only 1-5% accuracy degradation across diverse domains. Unlike prior methods that apply uniform pruning or rely on low-rank approximations of weight matrices or inputs in isolation, LLM-Sieve (i) learns task-aware joint projections to better approximate output behavior, and (ii) employs a Genetic Algorithm to discover differentiated pruning levels for each matrix. LLM-Sieve is fully compatible with LoRA fine-tuning and quantization, and uniquely demonstrates strong generalization across datasets within the same task domain. Together, these results establish a practical and robust mechanism to generate smaller performant task-specific models.
In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
Sarcasm is a challenge to sentiment analysis because of the incongruity between stated and implied sentiment. The challenge is exacerbated when the implication may be relevant to a specific country or geographical region. Pragmatic metacognitive prompting (PMP) is a cognition-inspired technique that has been used for pragmatic reasoning. In this paper, we harness PMP for explainable sarcasm detection for Australian and Indian English, alongside a benchmark dataset for standard English. We manually add sarcasm explanations to an existing sarcasm-labeled dataset for Australian and Indian English called BESSTIE, and compare the performance for explainable sarcasm detection for them with FLUTE, a standard English dataset containing sarcasm explanations. Our approach utilising PMP when evaluated on two open-weight LLMs (GEMMA and LLAMA) achieves statistically significant performance improvement across all tasks and datasets when compared with four alternative prompting strategies. We also find that alternative techniques such as agentic prompting mitigate context-related failures by enabling external knowledge retrieval. The focused contribution of our work is utilising PMP in generating sarcasm explanations for varieties of English.
The advancements in Multimodal Large Language Models (MLLMs) have enabled various multimodal tasks to be addressed under a zero-shot paradigm. This paradigm sidesteps the cost of model fine-tuning, emerging as a dominant trend in practical application. Nevertheless, Multimodal Sentiment Analysis (MSA), a pivotal challenge in the quest for general artificial intelligence, fails to accommodate this convenience. The zero-shot paradigm exhibits undesirable performance on MSA, casting doubt on whether MLLMs can perceive sentiments as competent as supervised models. By extending the zero-shot paradigm to In-Context Learning (ICL) and conducting an in-depth study on configuring demonstrations, we validate that MLLMs indeed possess such capability. Specifically, three key factors that cover demonstrations' retrieval, presentation, and distribution are comprehensively investigated and optimized. A sentimental predictive bias inherent in MLLMs is also discovered and later effectively counteracted. By complementing each other, the devised strategies for three factors result in average accuracy improvements of 15.9% on six MSA datasets against the zero-shot paradigm and 11.2% against the random ICL baseline.