Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed

Models, code, and papers for "facial recognition"

Responsible Facial Recognition and Beyond

Sep 19, 2019
Yi Zeng, Enmeng Lu, Yinqian Sun, Ruochen Tian

Facial recognition is changing the way we live in and interact with our society. Here we discuss the two sides of facial recognition, summarizing potential risks and current concerns. We introduce current policies and regulations in different countries. Very importantly, we point out that the risks and concerns are not only from facial recognition, but also realistically very similar to other biometric recognition technology, including but not limited to gait recognition, iris recognition, fingerprint recognition, voice recognition, etc. To create a responsible future, we discuss possible technological moves and efforts that should be made to keep facial recognition (and biometric recognition in general) developing for social good.

  Access Model/Code and Paper
A Survey of the Trends in Facial and Expression Recognition Databases and Methods

Dec 05, 2015
Sohini Roychowdhury, Michelle Emmons

Automated facial identification and facial expression recognition have been topics of active research over the past few decades. Facial and expression recognition find applications in human-computer interfaces, subject tracking, real-time security surveillance systems and social networking. Several holistic and geometric methods have been developed to identify faces and expressions using public and local facial image databases. In this work we present the evolution in facial image data sets and the methodologies for facial identification and recognition of expressions such as anger, sadness, happiness, disgust, fear and surprise. We observe that most of the earlier methods for facial and expression recognition aimed at improving the recognition rates for facial feature-based methods using static images. However, the recent methodologies have shifted focus towards robust implementation of facial/expression recognition from large image databases that vary with space (gathered from the internet) and time (video recordings). The evolution trends in databases and methodologies for facial and expression recognition can be useful for assessing the next-generation topics that may have applications in security systems or personal identification systems that involve "Quantitative face" assessments.

* International Journal of Computer Science & Engineering Survey, 2015, 6, 1-19 
* 16 pages, 4 figures, 3 tables, International Journal of Computer Science and Engineering Survey, October, 2015 

  Access Model/Code and Paper
Automatic Facial Expression Recognition Using Features of Salient Facial Patches

May 15, 2015
S L Happy, Aurobinda Routray

Extraction of discriminative features from salient facial patches plays a vital role in effective facial expression recognition. The accurate detection of facial landmarks improves the localization of the salient patches on face images. This paper proposes a novel framework for expression recognition by using appearance features of selected facial patches. A few prominent facial patches, depending on the position of facial landmarks, are extracted which are active during emotion elicitation. These active patches are further processed to obtain the salient patches which contain discriminative features for classification of each pair of expressions, thereby selecting different facial patches as salient for different pair of expression classes. One-against-one classification method is adopted using these features. In addition, an automated learning-free facial landmark detection technique has been proposed, which achieves similar performances as that of other state-of-art landmark detection methods, yet requires significantly less execution time. The proposed method is found to perform well consistently in different resolutions, hence, providing a solution for expression recognition in low resolution images. Experiments on CK+ and JAFFE facial expression databases show the effectiveness of the proposed system.

* IEEE Transactions on Affective Computing, vol. 6, no. 1, pp. 1-12, 2015 

  Access Model/Code and Paper
Facial expression recognition based on local region specific features and support vector machines

Apr 15, 2016
Deepak Ghimire, Sunghwan Jeong, Joonwhoan Lee, Sang Hyun Park

Facial expressions are one of the most powerful, natural and immediate means for human being to communicate their emotions and intensions. Recognition of facial expression has many applications including human-computer interaction, cognitive science, human emotion analysis, personality development etc. In this paper, we propose a new method for the recognition of facial expressions from single image frame that uses combination of appearance and geometric features with support vector machines classification. In general, appearance features for the recognition of facial expressions are computed by dividing face region into regular grid (holistic representation). But, in this paper we extracted region specific appearance features by dividing the whole face region into domain specific local regions. Geometric features are also extracted from corresponding domain specific regions. In addition, important local regions are determined by using incremental search approach which results in the reduction of feature dimension and improvement in recognition accuracy. The results of facial expressions recognition using features from domain specific regions are also compared with the results obtained using holistic representation. The performance of the proposed facial expression recognition system has been validated on publicly available extended Cohn-Kanade (CK+) facial expression data sets.

* Multimedia Tools and Applications, pp 1-19, Online: 16 March 2016 
* Facial expressions, Local representation, Appearance features, Geometric features, Support vector machines 

  Access Model/Code and Paper
Facial Expression Recognition Using Human to Animated-Character Expression Translation

Oct 12, 2019
Kamran Ali, Ilkin Isler, Charles Hughes

Facial expression recognition is a challenging task due to two major problems: the presence of inter-subject variations in facial expression recognition dataset and impure expressions posed by human subjects. In this paper we present a novel Human-to-Animation conditional Generative Adversarial Network (HA-GAN) to overcome these two problems by using many (human faces) to one (animated face) mapping. Specifically, for any given input human expression image, our HA-GAN transfers the expression information from the input image to a fixed animated identity. Stylized animated characters from the Facial Expression Research Group-Database (FERGDB) are used for the generation of fixed identity. By learning this many-to-one identity mapping function using our proposed HA-GAN, the effect of inter-subject variations can be reduced in Facial Expression Recognition(FER). We also argue that the expressions in the generated animated images are pure expressions and since FER is performed on these generated images, the performance of facial expression recognition is improved. Our initial experimental results on the state-of-the-art datasets show that facial expression recognition carried out on the generated animated images using our HA-GAN framework outperforms the baseline deep neural network and produces comparable or even better results than the state-of-the-art methods for facial expression recognition.

* 8 Pages 

  Access Model/Code and Paper
Feature Level Fusion from Facial Attributes for Face Recognition

Sep 28, 2019
Mohammad Rasool Izadi

We introduce a deep convolutional neural networks (CNN) architecture to classify facial attributes and recognize face images simultaneously via a shared learning paradigm to improve the accuracy for facial attribute prediction and face recognition performance. In this method, we use facial attributes as an auxiliary source of information to assist CNN features extracted from the face images to improve the face recognition performance. Specifically, we use a shared CNN architecture that jointly predicts facial attributes and recognize face images simultaneously via a shared learning parameters, and then we use facial attribute features an an auxiliary source of information concatenated by face features to increase the discrimination of the CNN for face recognition. This process assists the CNN classifier to better recognize face images. The experimental results show that our model increases both the face recognition and facial attribute prediction performance, especially for the identity attributes such as gender and race. We evaluated our method on several standard datasets labeled by identities and face attributes and the results show that the proposed method outperforms state-of-the-art face recognition models.

  Access Model/Code and Paper
A Fine-Grained Facial Expression Database for End-to-End Multi-Pose Facial Expression Recognition

Jul 25, 2019
Wenxuan Wang, Qiang Sun, Tao Chen, Chenjie Cao, Ziqi Zheng, Guoqiang Xu, Han Qiu, Yanwei Fu

The recent research of facial expression recognition has made a lot of progress due to the development of deep learning technologies, but some typical challenging problems such as the variety of rich facial expressions and poses are still not resolved. To solve these problems, we develop a new Facial Expression Recognition (FER) framework by involving the facial poses into our image synthesizing and classification process. There are two major novelties in this work. First, we create a new facial expression dataset of more than 200k images with 119 persons, 4 poses and 54 expressions. To our knowledge this is the first dataset to label faces with subtle emotion changes for expression recognition purpose. It is also the first dataset that is large enough to validate the FER task on unbalanced poses, expressions, and zero-shot subject IDs. Second, we propose a facial pose generative adversarial network (FaPE-GAN) to synthesize new facial expression images to augment the data set for training purpose, and then learn a LightCNN based Fa-Net model for expression classification. Finally, we advocate four novel learning tasks on this dataset. The experimental results well validate the effectiveness of the proposed approach.

* 10 pages, 8 figures 

  Access Model/Code and Paper
Joint Deep Learning of Facial Expression Synthesis and Recognition

Feb 06, 2020
Yan Yan, Ying Huang, Si Chen, Chunhua Shen, Hanzi Wang

Recently, deep learning based facial expression recognition (FER) methods have attracted considerable attention and they usually require large-scale labelled training data. Nonetheless, the publicly available facial expression databases typically contain a small amount of labelled data. In this paper, to overcome the above issue, we propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER. More specifically, the proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions. To increase the diversity of the training images, FESGAN is elaborately designed to generate images with new identities from a prior distribution. Secondly, an expression recognition network is jointly learned with the pre-trained FESGAN in a unified framework. In particular, the classification loss computed from the recognition network is used to simultaneously optimize the performance of both the recognition network and the generator of FESGAN. Moreover, in order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm to reduce the intra-class variations of images from the same class, which can significantly improve the final performance. Extensive experimental results on public facial expression databases demonstrate the superiority of the proposed method compared with several state-of-the-art FER methods.

  Access Model/Code and Paper
Facial emotion recognition using min-max similarity classifier

Jan 01, 2018
Olga Krestinskaya, Alex Pappachen James

Recognition of human emotions from the imaging templates is useful in a wide variety of human-computer interaction and intelligent systems applications. However, the automatic recognition of facial expressions using image template matching techniques suffer from the natural variability with facial features and recording conditions. In spite of the progress achieved in facial emotion recognition in recent years, the effective and computationally simple feature selection and classification technique for emotion recognition is still an open problem. In this paper, we propose an efficient and straightforward facial emotion recognition algorithm to reduce the problem of inter-class pixel mismatch during classification. The proposed method includes the application of pixel normalization to remove intensity offsets followed-up with a Min-Max metric in a nearest neighbor classifier that is capable of suppressing feature outliers. The results indicate an improvement of recognition performance from 92.85% to 98.57% for the proposed Min-Max classification method when tested on JAFFE database. The proposed emotion recognition technique outperforms the existing template matching methods.

* 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, 2017, pp. 752-758 

  Access Model/Code and Paper
Deep Multi-task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing

Jul 09, 2020
Rui Zhao, Tianshan Liu, Jun Xiao, Daniel P. K. Lun, Kin-Man Lam

Multi-task learning is an effective learning strategy for deep-learning-based facial expression recognition tasks. However, most existing methods take into limited consideration the feature selection, when transferring information between different tasks, which may lead to task interference when training the multi-task networks. To address this problem, we propose a novel selective feature-sharing method, and establish a multi-task network for facial expression recognition and facial expression synthesis. The proposed method can effectively transfer beneficial features between different tasks, while filtering out useless and harmful information. Moreover, we employ the facial expression synthesis task to enlarge and balance the training dataset to further enhance the generalization ability of the proposed method. Experimental results show that the proposed method achieves state-of-the-art performance on those commonly used facial expression recognition benchmarks, which makes it a potential solution to real-world facial expression recognition problems.

* ICPR 2020 

  Access Model/Code and Paper
Facial Expression Recognition Research Based on Deep Learning

Apr 24, 2019
Yongpei Zhu, Hongwei Fan, Kehong Yuan

With the development of deep learning, the structure of convolution neural network is becoming more and more complex and the performance of object recognition is getting better. However, the classification mechanism of convolution neural networks is still an unsolved core problem. The main problem is that convolution neural networks have too many parameters, which makes it difficult to analyze them. In this paper, we design and train a convolution neural network based on the expression recognition, and explore the classification mechanism of the network. By using the Deconvolution visualization method, the extremum point of the convolution neural network is projected back to the pixel space of the original image, and we qualitatively verify that the trained expression recognition convolution neural network forms a detector for the specific facial action unit. At the same time, we design the distance function to measure the distance between the presence of facial feature unit and the maximal value of the response on the feature map of convolution neural network. The greater the distance, the more sensitive the feature map is to the facial feature unit. By comparing the maximum distance of all facial feature elements in the feature graph, the mapping relationship between facial feature element and convolution neural network feature map is determined. Therefore, we have verified that the convolution neural network has formed a detector for the facial Action unit in the training process to realize the expression recognition.

* 12 pages,13 figures 

  Access Model/Code and Paper
Soft Locality Preserving Map (SLPM) for Facial Expression Recognition

Jan 11, 2018
Cigdem Turan, Kin-Man Lam, Xiangjian He

For image recognition, an extensive number of methods have been proposed to overcome the high-dimensionality problem of feature vectors being used. These methods vary from unsupervised to supervised, and from statistics to graph-theory based. In this paper, the most popular and the state-of-the-art methods for dimensionality reduction are firstly reviewed, and then a new and more efficient manifold-learning method, named Soft Locality Preserving Map (SLPM), is presented. Furthermore, feature generation and sample selection are proposed to achieve better manifold learning. SLPM is a graph-based subspace-learning method, with the use of k-neighbourhood information and the class information. The key feature of SLPM is that it aims to control the level of spread of the different classes, because the spread of the classes in the underlying manifold is closely connected to the generalizability of the learned subspace. Our proposed manifold-learning method can be applied to various pattern recognition applications, and we evaluate its performances on facial expression recognition. Experiments on databases, such as the Bahcesehir University Multilingual Affective Face Database (BAUM-2), the Extended Cohn-Kanade (CK+) Database, the Japanese Female Facial Expression (JAFFE) Database, and the Taiwanese Facial Expression Image Database (TFEID), show that SLPM can effectively reduce the dimensionality of the feature vectors and enhance the discriminative power of the extracted features for expression recognition. Furthermore, the proposed feature-generation method can improve the generalizability of the underlying manifolds for facial expression recognition.

  Access Model/Code and Paper
Covariance Pooling For Facial Expression Recognition

May 13, 2018
Dinesh Acharya, Zhiwu Huang, Danda Paudel, Luc Van Gool

Classifying facial expressions into different categories requires capturing regional distortions of facial landmarks. We believe that second-order statistics such as covariance is better able to capture such distortions in regional facial fea- tures. In this work, we explore the benefits of using a man- ifold network structure for covariance pooling to improve facial expression recognition. In particular, we first employ such kind of manifold networks in conjunction with tradi- tional convolutional networks for spatial pooling within in- dividual image feature maps in an end-to-end deep learning manner. By doing so, we are able to achieve a recognition accuracy of 58.14% on the validation set of Static Facial Expressions in the Wild (SFEW 2.0) and 87.0% on the vali- dation set of Real-World Affective Faces (RAF) Database. Both of these results are the best results we are aware of. Besides, we leverage covariance pooling to capture the tem- poral evolution of per-frame features for video-based facial expression recognition. Our reported results demonstrate the advantage of pooling image-set features temporally by stacking the designed manifold network of covariance pool-ing on top of convolutional network layers.

  Access Model/Code and Paper
Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines

Apr 12, 2016
Deepak Ghimire, Joonwhoan Lee

Facial expressions are widely used in the behavioral interpretation of emotions, cognitive science, and social interactions. In this paper, we present a novel method for fully automatic facial expression recognition in facial image sequences. As the facial expression evolves over time facial landmarks are automatically tracked in consecutive video frames, using displacements based on elastic bunch graph matching displacement estimation. Feature vectors from individual landmarks, as well as pairs of landmarks tracking results are extracted, and normalized, with respect to the first frame in the sequence. The prototypical expression sequence for each class of facial expression is formed, by taking the median of the landmark tracking results from the training facial expression sequences. Multi-class AdaBoost with dynamic time warping similarity distance between the feature vector of input facial expression and prototypical facial expression, is used as a weak classifier to select the subset of discriminative feature vectors. Finally, two methods for facial expression recognition are presented, either by using multi-class AdaBoost with dynamic time warping, or by using support vector machine on the boosted feature vectors. The results on the Cohn-Kanade (CK+) facial expression database show a recognition accuracy of 95.17% and 97.35% using multi-class AdaBoost and support vector machines, respectively.

* Sensors 2013, 13, 7714-7734 
* 21 pages, Sensors Journal, facial expression recognition 

  Access Model/Code and Paper
Spatio-Temporal Facial Expression Recognition Using Convolutional Neural Networks and Conditional Random Fields

Apr 24, 2017
Behzad Hasani, Mohammad H. Mahoor

Automated Facial Expression Recognition (FER) has been a challenging task for decades. Many of the existing works use hand-crafted features such as LBP, HOG, LPQ, and Histogram of Optical Flow (HOF) combined with classifiers such as Support Vector Machines for expression recognition. These methods often require rigorous hyperparameter tuning to achieve good results. Recently Deep Neural Networks (DNN) have shown to outperform traditional methods in visual object recognition. In this paper, we propose a two-part network consisting of a DNN-based architecture followed by a Conditional Random Field (CRF) module for facial expression recognition in videos. The first part captures the spatial relation within facial images using convolutional layers followed by three Inception-ResNet modules and two fully-connected layers. To capture the temporal relation between the image frames, we use linear chain CRF in the second part of our network. We evaluate our proposed network on three publicly available databases, viz. CK+, MMI, and FERA. Experiments are performed in subject-independent and cross-database manners. Our experimental results show that cascading the deep network architecture with the CRF module considerably increases the recognition of facial expressions in videos and in particular it outperforms the state-of-the-art methods in the cross-database experiments and yields comparable results in the subject-independent experiments.

* To appear in 12th IEEE Conference on Automatic Face and Gesture Recognition Workshop 

  Access Model/Code and Paper
Multi-Region Ensemble Convolutional Neural Network for Facial Expression Recognition

Jul 12, 2018
Yingruo Fan, Jacqueline C. K. Lam, Victor O. K. Li

Facial expressions play an important role in conveying the emotional states of human beings. Recently, deep learning approaches have been applied to image recognition field due to the discriminative power of Convolutional Neural Network (CNN). In this paper, we first propose a novel Multi-Region Ensemble CNN (MRE-CNN) framework for facial expression recognition, which aims to enhance the learning power of CNN models by capturing both the global and the local features from multiple human face sub-regions. Second, the weighted prediction scores from each sub-network are aggregated to produce the final prediction of high accuracy. Third, we investigate the effects of different sub-regions of the whole face on facial expression recognition. Our proposed method is evaluated based on two well-known publicly available facial expression databases: AFEW 7.0 and RAF-DB, and has been shown to achieve the state-of-the-art recognition accuracy.

* 10pages, 5 figures, Accepted by ICANN 2018 

  Access Model/Code and Paper
All-In-One: Facial Expression Transfer, Editing and Recognition Using A Single Network

Nov 16, 2019
Kamran Ali, Charles E. Hughes

In this paper, we present a unified architecture known as Transfer-Editing and Recognition Generative Adversarial Network (TER-GAN) which can be used: 1. to transfer facial expressions from one identity to another identity, known as Facial Expression Transfer (FET), 2. to transform the expression of a given image to a target expression, while preserving the identity of the image, known as Facial Expression Editing (FEE), and 3. to recognize the facial expression of a face image, known as Facial Expression Recognition (FER). In TER-GAN, we combine the capabilities of generative models to generate synthetic images, while learning important information about the input images during the reconstruction process. More specifically, two encoders are used in TER-GAN to encode identity and expression information from two input images, and a synthetic expression image is generated by the decoder part of TER-GAN. To improve the feature disentanglement and extraction process, we also introduce a novel expression consistency loss and an identity consistency loss which exploit extra expression and identity information from generated images. Experimental results show that the proposed method can be used for efficient facial expression transfer, facial expression editing and facial expression recognition. In order to evaluate the proposed technique and to compare our results with state-of-the-art methods, we have used the Oulu-CASIA dataset for our experiments.

* 10 pages, 5 figures 

  Access Model/Code and Paper
Spontaneous Facial Micro-Expression Recognition using Discriminative Spatiotemporal Local Binary Pattern with an Improved Integral Projection

Aug 07, 2016
Xiaohua Huang, Sujing Wang, Xin Liu, Guoying Zhao, Xiaoyi Feng, Matti Pietikainen

Recently, there are increasing interests in inferring mirco-expression from facial image sequences. Due to subtle facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial micro-expression recognition. Recent works usually used spatiotemporal local binary pattern for micro-expression analysis. However, the commonly used spatiotemporal local binary pattern considers dynamic texture information to represent face images while misses the shape attribute of face images. On the other hand, their works extracted the spatiotemporal features from the global face regions, which ignore the discriminative information between two micro-expression classes. The above-mentioned problems seriously limit the application of spatiotemporal local binary pattern on micro-expression recognition. In this paper, we propose a discriminative spatiotemporal local binary pattern based on an improved integral projection to resolve the problems of spatiotemporal local binary pattern for micro-expression recognition. Firstly, we develop an improved integral projection for preserving the shape attribute of micro-expressions. Furthermore, an improved integral projection is incorporated with local binary pattern operators across spatial and temporal domains. Specifically, we extract the novel spatiotemporal features incorporating shape attributes into spatiotemporal texture features. For increasing the discrimination of micro-expressions, we propose a new feature selection based on Laplacian method to extract the discriminative information for facial micro-expression recognition. Intensive experiments are conducted on three availably published micro-expression databases. We compare our method with the state-of-the-art algorithms. Experimental results demonstrate that our proposed method achieves promising performance for micro-expression recognition.

* 13pages, 8 figures, 5 tables, submitted to IEEE Transactions on Image Processing 

  Access Model/Code and Paper
Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection

Sep 23, 2017
Yue Wu, Qiang Ji

Cascade regression framework has been shown to be effective for facial landmark detection. It starts from an initial face shape and gradually predicts the face shape update from the local appearance features to generate the facial landmark locations in the next iteration until convergence. In this paper, we improve upon the cascade regression framework and propose the Constrained Joint Cascade Regression Framework (CJCRF) for simultaneous facial action unit recognition and facial landmark detection, which are two related face analysis tasks, but are seldomly exploited together. In particular, we first learn the relationships among facial action units and face shapes as a constraint. Then, in the proposed constrained joint cascade regression framework, with the help from the constraint, we iteratively update the facial landmark locations and the action unit activation probabilities until convergence. Experimental results demonstrate that the intertwined relationships of facial action units and face shapes boost the performances of both facial action unit recognition and facial landmark detection. The experimental results also demonstrate the effectiveness of the proposed method comparing to the state-of-the-art works.

* International Conference on Computer Vision and Pattern Recognition, 2016 

  Access Model/Code and Paper
Deep Sketch-Photo Face Recognition Assisted by Facial Attributes

Jul 31, 2018
Seyed Mehdi Iranmanesh, Hadi Kazemi, Sobhan Soleymani, Ali Dabouei, Nasser M. Nasrabadi

In this paper, we present a deep coupled framework to address the problem of matching sketch image against a gallery of mugshots. Face sketches have the essential in- formation about the spatial topology and geometric details of faces while missing some important facial attributes such as ethnicity, hair, eye, and skin color. We propose a cou- pled deep neural network architecture which utilizes facial attributes in order to improve the sketch-photo recognition performance. The proposed Attribute-Assisted Deep Con- volutional Neural Network (AADCNN) method exploits the facial attributes and leverages the loss functions from the facial attributes identification and face verification tasks in order to learn rich discriminative features in a common em- bedding subspace. The facial attribute identification task increases the inter-personal variations by pushing apart the embedded features extracted from individuals with differ- ent facial attributes, while the verification task reduces the intra-personal variations by pulling together all the fea- tures that are related to one person. The learned discrim- inative features can be well generalized to new identities not seen in the training data. The proposed architecture is able to make full use of the sketch and complementary fa- cial attribute information to train a deep model compared to the conventional sketch-photo recognition methods. Exten- sive experiments are performed on composite (E-PRIP) and semi-forensic (IIIT-D semi-forensic) datasets. The results show the superiority of our method compared to the state- of-the-art models in sketch-photo recognition algorithms

  Access Model/Code and Paper