What is facial recognition? Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Papers and Code
Apr 30, 2025
Abstract:Facial expression recognition (FER) is a subset of computer vision with important applications for human-computer-interaction, healthcare, and customer service. FER represents a challenging problem-space because accurate classification requires a model to differentiate between subtle changes in facial features. In this paper, we examine the use of multi-modal transfer learning to improve performance on a challenging video-based FER dataset, Dynamic Facial Expression in-the-Wild (DFEW). Using a combination of pretrained ResNets, OpenPose, and OmniVec networks, we explore the impact of cross-temporal, multi-modal features on classification accuracy. Ultimately, we find that these finely-tuned multi-modal feature generators modestly improve accuracy of our transformer-based classification model.
* 8 pages, 6 figures
Via

Apr 30, 2025
Abstract:Facial expression recognition (FER) is a key research area in computer vision and human-computer interaction. Despite recent advances in deep learning, challenges persist, especially in generalizing to new scenarios. In fact, zero-shot FER significantly reduces the performance of state-of-the-art FER models. To address this problem, the community has recently started to explore the integration of knowledge from Large Language Models for visual tasks. In this work, we evaluate a broad collection of locally executed Visual Language Models (VLMs), avoiding the lack of task-specific knowledge by adopting a Visual Question Answering strategy. We compare the proposed pipeline with state-of-the-art FER models, both integrating and excluding VLMs, evaluating well-known FER benchmarks: AffectNet, FERPlus, and RAF-DB. The results show excellent performance for some VLMs in zero-shot FER scenarios, indicating the need for further exploration to improve FER generalization.
Via

Apr 30, 2025
Abstract:The success of face recognition (FR) systems has led to serious privacy concerns due to potential unauthorized surveillance and user tracking on social networks. Existing methods for enhancing privacy fail to generate natural face images that can protect facial privacy. In this paper, we propose diffusion-based adversarial identity manipulation (DiffAIM) to generate natural and highly transferable adversarial faces against malicious FR systems. To be specific, we manipulate facial identity within the low-dimensional latent space of a diffusion model. This involves iteratively injecting gradient-based adversarial identity guidance during the reverse diffusion process, progressively steering the generation toward the desired adversarial faces. The guidance is optimized for identity convergence towards a target while promoting semantic divergence from the source, facilitating effective impersonation while maintaining visual naturalness. We further incorporate structure-preserving regularization to preserve facial structure consistency during manipulation. Extensive experiments on both face verification and identification tasks demonstrate that compared with the state-of-the-art, DiffAIM achieves stronger black-box attack transferability while maintaining superior visual quality. We also demonstrate the effectiveness of the proposed approach for commercial FR APIs, including Face++ and Aliyun.
Via

Apr 27, 2025
Abstract:The urging societal demand for fair AI systems has put pressure on the research community to develop predictive models that are not only globally accurate but also meet new fairness criteria, reflecting the lack of disparate mistreatment with respect to sensitive attributes ($\textit{e.g.}$ gender, ethnicity, age). In particular, the variability of the errors made by certain Facial Recognition (FR) systems across specific segments of the population compromises the deployment of the latter, and was judged unacceptable by regulatory authorities. Designing fair FR systems is a very challenging problem, mainly due to the complex and functional nature of the performance measure used in this domain ($\textit{i.e.}$ ROC curves) and because of the huge heterogeneity of the face image datasets usually available for training. In this paper, we propose a novel post-processing approach to improve the fairness of pre-trained FR models by optimizing a regression loss which acts on centroid-based scores. Beyond the computational advantages of the method, we present numerical experiments providing strong empirical evidence of the gain in fairness and of the ability to preserve global accuracy.
* Accepted at both the AFME and RegML Workshops at NeurIPS 2024. A
preliminary version has been accepted for publication by Springer Nature, in
the context of the ICPR 2024 conference
Via

Apr 28, 2025
Abstract:Emotion understanding is a critical yet challenging task. Most existing approaches rely heavily on identity-sensitive information, such as facial expressions and speech, which raises concerns about personal privacy. To address this, we introduce the De-identity Multimodal Emotion Recognition and Reasoning (DEEMO), a novel task designed to enable emotion understanding using de-identified video and audio inputs. The DEEMO dataset consists of two subsets: DEEMO-NFBL, which includes rich annotations of Non-Facial Body Language (NFBL), and DEEMO-MER, an instruction dataset for Multimodal Emotion Recognition and Reasoning using identity-free cues. This design supports emotion understanding without compromising identity privacy. In addition, we propose DEEMO-LLaMA, a Multimodal Large Language Model (MLLM) that integrates de-identified audio, video, and textual information to enhance both emotion recognition and reasoning. Extensive experiments show that DEEMO-LLaMA achieves state-of-the-art performance on both tasks, outperforming existing MLLMs by a significant margin, achieving 74.49% accuracy and 74.45% F1-score in de-identity emotion recognition, and 6.20 clue overlap and 7.66 label overlap in de-identity emotion reasoning. Our work contributes to ethical AI by advancing privacy-preserving emotion understanding and promoting responsible affective computing.
Via

Apr 25, 2025
Abstract:Facial recognition technology poses significant privacy risks, as it relies on biometric data that is inherently sensitive and immutable if compromised. To mitigate these concerns, face recognition systems convert raw images into embeddings, traditionally considered privacy-preserving. However, model inversion attacks pose a significant privacy threat by reconstructing these private facial images, making them a crucial tool for evaluating the privacy risks of face recognition systems. Existing methods usually require training individual generators for each target model, a computationally expensive process. In this paper, we propose DiffUMI, a training-free diffusion-driven universal model inversion attack for face recognition systems. DiffUMI is the first approach to apply a diffusion model for unconditional image generation in model inversion. Unlike other methods, DiffUMI is universal, eliminating the need for training target-specific generators. It operates within a fixed framework and pretrained diffusion model while seamlessly adapting to diverse target identities and models. DiffUMI breaches privacy-preserving face recognition systems with state-of-the-art success, demonstrating that an unconditional diffusion model, coupled with optimized adversarial search, enables efficient and high-fidelity facial reconstruction. Additionally, we introduce a novel application of out-of-domain detection (OODD), marking the first use of model inversion to distinguish non-face inputs from face inputs based solely on embeddings.
Via

Apr 24, 2025
Abstract:Vision Large Language Models (VLLMs) exhibit promising potential for multi-modal understanding, yet their application to video-based emotion recognition remains limited by insufficient spatial and contextual awareness. Traditional approaches, which prioritize isolated facial features, often neglect critical non-verbal cues such as body language, environmental context, and social interactions, leading to reduced robustness in real-world scenarios. To address this gap, we propose Set-of-Vision-Text Prompting (SoVTP), a novel framework that enhances zero-shot emotion recognition by integrating spatial annotations (e.g., bounding boxes, facial landmarks), physiological signals (facial action units), and contextual cues (body posture, scene dynamics, others' emotions) into a unified prompting strategy. SoVTP preserves holistic scene information while enabling fine-grained analysis of facial muscle movements and interpersonal dynamics. Extensive experiments show that SoVTP achieves substantial improvements over existing visual prompting methods, demonstrating its effectiveness in enhancing VLLMs' video emotion recognition capabilities.
* 12 pages, 10 figures
Via

Apr 24, 2025
Abstract:Electroencephalography (EEG) signals provide a promising and involuntary reflection of brain activity related to emotional states, offering significant advantages over behavioral cues like facial expressions. However, EEG signals are often noisy, affected by artifacts, and vary across individuals, complicating emotion recognition. While multimodal approaches have used Peripheral Physiological Signals (PPS) like GSR to complement EEG, they often overlook the dynamic synchronization and consistent semantics between the modalities. Additionally, the temporal dynamics of emotional fluctuations across different time resolutions in PPS remain underexplored. To address these challenges, we propose PhysioSync, a novel pre-training framework leveraging temporal and cross-modal contrastive learning, inspired by physiological synchronization phenomena. PhysioSync incorporates Cross-Modal Consistency Alignment (CM-CA) to model dynamic relationships between EEG and complementary PPS, enabling emotion-related synchronizations across modalities. Besides, it introduces Long- and Short-Term Temporal Contrastive Learning (LS-TCL) to capture emotional synchronization at different temporal resolutions within modalities. After pre-training, cross-resolution and cross-modal features are hierarchically fused and fine-tuned to enhance emotion recognition. Experiments on DEAP and DREAMER datasets demonstrate PhysioSync's advanced performance under uni-modal and cross-modal conditions, highlighting its effectiveness for EEG-centered emotion recognition.
* The source code will be publicly available at
https://github.com/MSA-LMC/PhysioSync
Via

Apr 21, 2025
Abstract:We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
Via

Apr 18, 2025
Abstract:Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
Via
