Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Deep neural networks often inherit social and demographic biases from annotated data during model training, leading to unfair predictions, especially in the presence of sensitive attributes like race, age, gender etc. Existing methods fall prey to the inherent data imbalance between attribute groups and inadvertently emphasize on sensitive attributes, worsening unfairness and performance. To surmount these challenges, we propose SHaSaM (Submodular Hard Sample Mining), a novel combinatorial approach that models fairness-driven representation learning as a submodular hard-sample mining problem. Our two-stage approach comprises of SHaSaM-MINE, which introduces a submodular subset selection strategy to mine hard positives and negatives - effectively mitigating data imbalance, and SHaSaM-LEARN, which introduces a family of combinatorial loss functions based on Submodular Conditional Mutual Information to maximize the decision boundary between target classes while minimizing the influence of sensitive attributes. This unified formulation restricts the model from learning features tied to sensitive attributes, significantly enhancing fairness without sacrificing performance. Experiments on CelebA and UTKFace demonstrate that SHaSaM achieves state-of-the-art results, with up to 2.7 points improvement in model fairness (Equalized Odds) and a 3.5% gain in Accuracy, within fewer epochs as compared to existing methods.
With the deep integration of facial recognition into online banking, identity verification, and other networked services, achieving effective decoupling of identity information from visual representations during image storage and transmission has become a critical challenge for privacy protection. To address this issue, we propose SIDeR, a Semantic decoupling-driven framework for unrestricted face privacy protection. SIDeR decomposes a facial image into a machine-recognizable identity feature vector and a visually perceptible semantic appearance component. By leveraging semantic-guided recomposition in the latent space of a diffusion model, it generates visually anonymous adversarial faces while maintaining machine-level identity consistency. The framework incorporates momentum-driven unrestricted perturbation optimization and a semantic-visual balancing factor to synthesize multiple visually diverse, highly natural adversarial samples. Furthermore, for authorized access, the protected image can be restored to its original form when the correct password is provided. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that SIDeR achieves a 99% attack success rate in black-box scenarios and outperforms baseline methods by 41.28% in PSNR-based restoration quality.
Incorporating individual-level cognitive priors offers an important route to personalizing neural networks, yet accurately eliciting such priors remains challenging: existing methods either fail to uniquely identify them or introduce systematic biases. Here, we introduce PriorProbe, a novel elicitation approach grounded in Markov Chain Monte Carlo with People that recovers fine-grained, individual-specific priors. Focusing on a facial expression recognition task, we apply PriorProbe to individual participants and test whether integrating the recovered priors with a state-of-the-art neural network improves its ability to predict an individual's classification on ambiguous stimuli. The PriorProbe-derived priors yield substantial performance gains, outperforming both the neural network alone and alternative sources of priors, while preserving the network's inference on ground-truth labels. Together, these results demonstrate that PriorProbe provides a general and interpretable framework for personalizing deep neural networks.
Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
The lack of large-scale, demographically diverse face images with precise Action Unit (AU) occurrence and intensity annotations has long been recognized as a fundamental bottleneck in developing generalizable AU recognition systems. In this paper, we propose MAUGen, a diffusion-based multi-modal framework that jointly generates a large collection of photorealistic facial expressions and anatomically consistent AU labels, including both occurrence and intensity, conditioned on a single descriptive text prompt. Our MAUGen involves two key modules: (1) a Multi-modal Representation Learning (MRL) module that captures the relationships among the paired textual description, facial identity, expression image, and AU activations within a unified latent space; and (2) a Diffusion-based Image label Generator (DIG) that decodes the joint representation into aligned facial image-label pairs across diverse identities. Under this framework, we introduce Multi-Identity Facial Action (MIFA), a large-scale multimodal synthetic dataset featuring comprehensive AU annotations and identity variations. Extensive experiments demonstrate that MAUGen outperforms existing methods in synthesizing photorealistic, demographically diverse facial images along with semantically aligned AU labels.
Detection of human emotions based on facial images in real-world scenarios is a difficult task due to low image quality, variations in lighting, pose changes, background distractions, small inter-class variations, noisy crowd-sourced labels, and severe class imbalance, as observed in the FER-2013 dataset of 48x48 grayscale images. Although recent approaches using large CNNs such as VGG and ResNet achieve reasonable accuracy, they are computationally expensive and memory-intensive, limiting their practicality for real-time applications. We address these challenges using a lightweight and efficient facial emotion recognition pipeline based on EfficientNetB2, trained using a two-stage warm-up and fine-tuning strategy. The model is enhanced with AdamW optimization, decoupled weight decay, label smoothing (epsilon = 0.06) to reduce annotation noise, and clipped class weights to mitigate class imbalance, along with dropout, mixed-precision training, and extensive real-time data augmentation. The model is trained using a stratified 87.5%/12.5% train-validation split while keeping the official test set intact, achieving a test accuracy of 68.78% with nearly ten times fewer parameters than VGG16-based baselines. Experimental results, including per-class metrics and learning dynamics, demonstrate stable training and strong generalization, making the proposed approach suitable for real-time and edge-based applications.
Face morphing attacks present a significant threat to face recognition systems used in electronic identity enrolment and border control, particularly in single-image morphing attack detection (S-MAD) scenarios where no trusted reference is available. In spite of the vast amount of research on this problem, morph detection systems struggle in cross-dataset scenarios. To address this problem, we introduce a region-aware frequency-based morph detection strategy that drastically improves over strong baseline methods in challenging cross-dataset and cross-morph settings using a lightweight approach. Having observed the separability of bona fide and morph samples in the frequency domain of different facial parts, our approach 1) introduces the concept of residual frequency domain, where the frequency of the signal is decoupled from the natural spectral decay to easily discriminate between morph and bona fide data; 2) additionally, we reason in a global and local manner by combining the evidence from different facial regions in a Markov Random Field, which infers a globally consistent decision. The proposed method, trained exclusively on the synthetic morphing attack detection development dataset (SMDD), is evaluated in challenging cross-dataset and cross-morph settings on FRLL-Morph and MAD22 sets. Our approach achieves an average equal error rate (EER) of 1.85\% on FRLL-Morph and ranks second on MAD22 with an average EER of 6.12\%, while also obtaining a good bona fide presentation classification error rate (BPCER) at a low attack presentation classification error rate (APCER) using only spectral features. These findings indicate that Fourier-domain residual modeling with structured regional fusion offers a competitive alternative to deep S-MAD architectures.
In the realm of Virtual Reality (VR) and Human-Computer Interaction (HCI), real-time emotion recognition shows promise for supporting individuals with Autism Spectrum Disorder (ASD) in improving social skills. This task requires a strict latency-accuracy trade-off, with motion-to-photon (MTP) latency kept below 140 ms to maintain contingency. However, most off-the-shelf Deep Learning models prioritize accuracy over the strict timing constraints of commodity hardware. As a first step toward accessible VR therapy, we benchmark State-of-the-Art (SOTA) models for Zero-Shot Facial Expression Recognition (FER) on virtual characters using the UIBVFED dataset. We evaluate Medium and Nano variants of YOLO (v8, v11, and v12) for face detection, alongside general-purpose Vision Transformers including CLIP, SigLIP, and ViT-FER.Our results on CPU-only inference demonstrate that while face detection on stylized avatars is robust (100% accuracy), a "Latency Wall" exists in the classification stage. The YOLOv11n architecture offers the optimal balance for detection (~54 ms). However, general-purpose Transformers like CLIP and SigLIP fail to achieve viable accuracy (<23%) or speed (>150 ms) for real-time loops. This study highlights the necessity for lightweight, domain-specific architectures to enable accessible, real-time AI in therapeutic settings.
Emotion detection from faces is one of the machine learning problems needed for human-computer interaction. The variety of methods used is enormous, which motivated an in-depth review of articles and scientific studies. Three of the most interesting and best solutions are selected, followed by the selection of three datasets that stood out for the diversity and number of images in them. The selected neural networks are trained, and then a series of experiments are performed to compare their performance, including testing on different datasets than a model was trained on. This reveals weaknesses in existing solutions, including differences between datasets, unequal levels of difficulty in recognizing certain emotions and the challenges in differentiating between closely related emotions.
Intelligent surveillance systems often handle perceptual tasks such as object detection, facial recognition, and emotion analysis independently, but they lack a unified, adaptive runtime scheduler that dynamically allocates computational resources based on contextual triggers. This limits their holistic understanding and efficiency on low-power edge devices. To address this, we present a real-time multi-modal vision framework that integrates object detection, owner-specific face recognition, and emotion detection into a unified pipeline deployed on a Raspberry Pi 5 edge platform. The core of our system is an adaptive scheduling mechanism that reduces computational load by 65\% compared to continuous processing by selectively activating modules such as, YOLOv8n for object detection, a custom FaceNet-based embedding system for facial recognition, and DeepFace's CNN for emotion classification. Experimental results demonstrate the system's efficacy, with the object detection module achieving an Average Precision (AP) of 0.861, facial recognition attaining 88\% accuracy, and emotion detection showing strong discriminatory power (AUC up to 0.97 for specific emotions), while operating at 5.6 frames per second. Our work demonstrates that context-aware scheduling is the key to unlocking complex multi-modal AI on cost-effective edge hardware, making intelligent perception more accessible and privacy-preserving.