Text extraction from documents is the process of extracting text data from scanned documents or images.
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks.
Transformer-based architectures have advanced text summarization, yet their quadratic complexity limits scalability on long documents. This paper introduces BiSparse-AAS (Bilinear Sparse Attention with Adaptive Spans), a novel framework that combines sparse attention, adaptive spans, and bilinear attention to address these limitations. Sparse attention reduces computational costs by focusing on the most relevant parts of the input, while adaptive spans dynamically adjust the attention ranges. Bilinear attention complements both by modeling complex token interactions within this refined context. BiSparse-AAS consistently outperforms state-of-the-art baselines in both extractive and abstractive summarization tasks, achieving average ROUGE improvements of about 68.1% on CNN/DailyMail and 52.6% on XSum, while maintaining strong performance on OpenWebText and Gigaword datasets. By addressing efficiency, scalability, and long-sequence modeling, BiSparse-AAS provides a unified, practical solution for real-world text summarization applications.
Retrieval-augmented generation (RAG) has emerged as a leading approach to reducing hallucinations in large language models (LLMs). Current RAG evaluation benchmarks primarily focus on what we call local RAG: retrieving relevant chunks from a small subset of documents to answer queries that require only localized understanding within specific text chunks. However, many real-world applications require a fundamentally different capability -- global RAG -- which involves aggregating and analyzing information across entire document collections to derive corpus-level insights (for example, "What are the top 10 most cited papers in 2023?"). In this paper, we introduce GlobalQA -- the first benchmark specifically designed to evaluate global RAG capabilities, covering four core task types: counting, extremum queries, sorting, and top-k extraction. Through systematic evaluation across different models and baselines, we find that existing RAG methods perform poorly on global tasks, with the strongest baseline achieving only 1.51 F1 score. To address these challenges, we propose GlobalRAG, a multi-tool collaborative framework that preserves structural coherence through chunk-level retrieval, incorporates LLM-driven intelligent filters to eliminate noisy documents, and integrates aggregation modules for precise symbolic computation. On the Qwen2.5-14B model, GlobalRAG achieves 6.63 F1 compared to the strongest baseline's 1.51 F1, validating the effectiveness of our method.
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
Financial documents are essential sources of information for regulators, auditors, and financial institutions, particularly for assessing the wealth and compliance of Small and Medium-sized Businesses. However, SMB documents are often difficult to parse. They are rarely born digital and instead are distributed as scanned images that are none machine readable. The scans themselves are low in resolution, affected by skew or rotation, and often contain noisy backgrounds. These documents also tend to be heterogeneous, mixing narratives, tables, figures, and multilingual content within the same report. Such characteristics pose major challenges for automated information extraction, especially when relying on end to end large Vision Language Models, which are computationally expensive, sensitive to noise, and slow when applied to files with hundreds of pages. We propose a multistage pipeline that leverages traditional image processing models and OCR extraction, together with compact VLMs for structured field extraction of large-scale financial documents. Our approach begins with image pre-processing, including segmentation, orientation detection, and size normalization. Multilingual OCR is then applied to recover page-level text. Upon analyzing the text information, pages are retrieved for coherent sections. Finally, compact VLMs are operated within these narrowed-down scopes to extract structured financial indicators. Our approach is evaluated using an internal corpus of multi-lingual, scanned financial documents. The results demonstrate that compact VLMs, together with a multistage pipeline, achieves 8.8 times higher field level accuracy relative to directly feeding the whole document into large VLMs, only at 0.7 percent of the GPU cost and 92.6 percent less end-to-end service latency.
In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts while employing a dual-time modeling that distinguishes when information is observed from when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~17% better stability, and over 90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.
We present olmOCR 2, the latest in our family of powerful OCR systems for converting digitized print documents, like PDFs, into clean, naturally ordered plain text. olmOCR 2 is powered by olmOCR-2-7B-1025, a specialized, 7B vision language model (VLM) trained using reinforcement learning with verifiable rewards (RLVR), where our rewards are a diverse set of binary unit tests. To scale unit test creation, we develop a pipeline for generating synthetic documents with diverse and challenging layouts, known ground-truth HTML source code, and extracted test cases. We show that RL training on these test cases results in state-of-the-art performance on olmOCR-Bench, our English-language OCR benchmark, with the largest improvements in math formula conversion, table parsing, and multi-column layouts compared to previous versions. We release our model, data and code under permissive open licenses.
The advent of Large Language Models has revolutionized tasks across domains, including the automation of legal document analysis, a critical component of modern contract management systems. This paper presents a comprehensive implementation of LLM-enhanced metadata extraction for contract review, focusing on the automatic detection and annotation of salient legal clauses. Leveraging both the publicly available Contract Understanding Atticus Dataset (CUAD) and proprietary contract datasets, our work demonstrates the integration of advanced LLM methodologies with practical applications. We identify three pivotal elements for optimizing metadata extraction: robust text conversion, strategic chunk selection, and advanced LLM-specific techniques, including Chain of Thought (CoT) prompting and structured tool calling. The results from our experiments highlight the substantial improvements in clause identification accuracy and efficiency. Our approach shows promise in reducing the time and cost associated with contract review while maintaining high accuracy in legal clause identification. The results suggest that carefully optimized LLM systems could serve as valuable tools for legal professionals, potentially increasing access to efficient contract review services for organizations of all sizes.




Designing document identifiers (docids) that carry rich semantic information while maintaining tractable search spaces is a important challenge in generative retrieval (GR). Popular codebook methods address this by building a hierarchical semantic tree and constraining generation to its child nodes, yet their numeric identifiers cannot leverage the large language model's pretrained natural language understanding. Conversely, using text as docid provides more semantic expressivity but inflates the decoding space, making the system brittle to early-step errors. To resolve this trade-off, we propose C2T-ID: (i) first construct semantic numerical docid via hierarchical clustering; (ii) then extract high-frequency metadata keywords and iteratively replace each numeric label with its cluster's top-K keywords; and (iii) an optional two-level semantic smoothing step further enhances the fluency of C2T-ID. Experiments on Natural Questions and Taobao's product search demonstrate that C2T-ID significantly outperforms atomic, semantic codebook, and pure-text docid baselines, demonstrating its effectiveness in balancing semantic expressiveness with search space constraints.