Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images. We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
Predicting drug-drug interactions (DDIs) is essential for safe pharmacological treatments. Previous graph neural network (GNN) models leverage molecular structures and interaction networks but mostly rely on linear aggregation and symmetric assumptions, limiting their ability to capture nonlinear and heterogeneous patterns. We propose MGKAN, a Graph Kolmogorov-Arnold Network that introduces learnable basis functions into asymmetric DDI prediction. MGKAN replaces conventional MLP transformations with KAN-driven basis functions, enabling more expressive and nonlinear modeling of drug relationships. To capture pharmacological dependencies, MGKAN integrates three network views-an asymmetric DDI network, a co-interaction network, and a biochemical similarity network-with role-specific embeddings to preserve directional semantics. A fusion module combines linear attention and nonlinear transformation to enhance representational capacity. On two benchmark datasets, MGKAN outperforms seven state-of-the-art baselines. Ablation studies and case studies confirm its predictive accuracy and effectiveness in modeling directional drug effects.
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
Over the past years, embedding learning on networks has shown tremendous results in link prediction tasks for complex systems, with a wide range of real-life applications. Learning a representation for each node in a knowledge graph allows us to capture topological and semantic information, which can be processed in downstream analyses later. In the link prediction task, high-dimensional network information is encoded into low-dimensional vectors, which are then fed to a predictor to infer new connections between nodes in the network. As the network complexity (that is, the numbers of connections and types of interactions) grows, embedding learning turns out increasingly challenging. This review covers published models on embedding learning on multiplex networks for link prediction. First, we propose refined taxonomies to classify and compare models, depending on the type of embeddings and embedding techniques. Second, we review and address the problem of reproducible and fair evaluation of embedding learning on multiplex networks for the link prediction task. Finally, we tackle evaluation on directed multiplex networks by proposing a novel and fair testing procedure. This review constitutes a crucial step towards the development of more performant and tractable embedding learning approaches for multiplex networks and their fair evaluation for the link prediction task. We also suggest guidelines on the evaluation of models, and provide an informed perspective on the challenges and tools currently available to address downstream analyses applied to multiplex networks.
Teaching requires distilling a rich category distribution into a small set of informative exemplars. Although prior work shows that humans consider both representativeness and diversity when teaching, the computational principles underlying these tradeoffs remain unclear. We address this gap by modeling human exemplar selection using neural network feature representations and principled subset selection criteria. Novel visual categories were embedded along a one-dimensional morph continuum using pretrained vision models, and selection strategies varied in their emphasis on prototypicality, joint representativeness, and diversity. Adult participants selected one to three exemplars to teach a learner. Model-human comparisons revealed that strategies based on joint representativeness, or its combination with diversity, best captured human judgments, whereas purely prototypical or diversity-based strategies performed worse. Moreover, transformer-based representations consistently aligned more closely with human behavior than convolutional networks. These results highlight the potential utility of dataset distillation methods in machine learning as computational models for teaching.
This paper proposes a narrowband fully-analog $N$-antenna transmitter that emulates the functionality of a narrowband fully-digital $N$-antenna transmitter. Specifically, in symbol interval $m$, the proposed fully-analog transmitter synthesizes an arbitrary complex excitation vector $\bm x[m]\in\mathbb{C}^N$ with prescribed total power $\|\bm x[m]\|_2^2=P$ from a single coherent RF tone, using only tunable phase-control elements embedded in a passive interferometric programmable network. The programmable network is excited through one input port while the remaining $N - 1$ input ports are impedance matched. In the ideal lossless case, the network transfer is unitary and therefore redistributes RF power among antenna ports without dissipative amplitude control. The synthesis task is posed as a unitary state-preparation problem: program a unitary family so that $\bm V(\bm\varphi)\bm e_1=\bm c$, where $\bm c=\bm x/\sqrt{P}$ and $\|\bm c\|_2=1$. We provide a constructive realization and a closed-form programming rule: a binary magnitude-splitting tree allocates the desired per-antenna magnitudes $|c_n|$ using $N -1$ tunable split ratios, and a per-antenna output phase bank assigns the target phases using $N$ tunable phase shifts. The resulting architecture uses $2N-1$ real tunable degrees of freedom and admits a deterministic $O(N)$ programming procedure with no iterative optimization, enabling symbol-by-symbol updates when the chosen phase-control technology supports the required tuning speed. Using representative COTS components, we model the RF-front-end DC power of the proposed fully-analog transmitter and compare it against an equivalent COTS fully-digital array. For $N\le 16$, the comparison indicates significant RF-front-end power savings for the fully-analog architecture. The results in this paper are intended as a proof-of-concept for a narrowband fully-analog transmitter.
We introduce a dynamic sparse training algorithm based on linearized Bregman iterations / mirror descent that exploits the naturally incurred sparsity by alternating between periods of static and dynamic sparsity pattern updates. The key idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of the network structure to enable efficient exploration of the sparse parameter space while maintaining sparsity. We provide convergence guaranties by embedding our method in a multilevel optimization framework. Furthermore, we empirically show that our algorithm can produce highly sparse and accurate models on standard benchmarks. We also show that the theoretical number of FLOPs compared to SGD training can be reduced from 38% for standard Bregman iterations to 6% for our method while maintaining test accuracy.
This work studies electrocardiogram (ECG) biometrics at large scale, evaluating how strongly an ECG can be linked to an individual and, consequently, how its anonymization may be compromised. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, indicating that anonymization based solely on releasing features does not guarantee privacy. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-K shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature: re-identification is already possible with tabular features and is further amplified by embedding-based models, making privacy implications and realistic operational protocols essential to consider.