Topic:License Plate Recognition
What is License Plate Recognition? License-plate recognition is the process of identifying and reading license plates from images or videos.
Papers and Code
Sep 11, 2025
Abstract:In real-world traffic surveillance, vehicle images captured under adverse weather, poor lighting, or high-speed motion often suffer from severe noise and blur. Such degradations significantly reduce the accuracy of license plate recognition systems, especially when the plate occupies only a small region within the full vehicle image. Restoring these degraded images a fast realtime manner is thus a crucial pre-processing step to enhance recognition performance. In this work, we propose a Vertical Residual Autoencoder (VRAE) architecture designed for the image enhancement task in traffic surveillance. The method incorporates an enhancement strategy that employs an auxiliary block, which injects input-aware features at each encoding stage to guide the representation learning process, enabling better general information preservation throughout the network compared to conventional autoencoders. Experiments on a vehicle image dataset with visible license plates demonstrate that our method consistently outperforms Autoencoder (AE), Generative Adversarial Network (GAN), and Flow-Based (FB) approaches. Compared with AE at the same depth, it improves PSNR by about 20%, reduces NMSE by around 50%, and enhances SSIM by 1%, while requiring only a marginal increase of roughly 1% in parameters.
Via

Jul 23, 2025
Abstract:License plate recognition in open environments is widely applicable across various domains; however, the diversity of license plate types and imaging conditions presents significant challenges. To address the limitations encountered by CNN and CRNN-based approaches in license plate recognition, this paper proposes a unified solution that integrates a lightweight visual encoder with a text decoder, within a pre-training framework tailored for single and double-line Chinese license plates. To mitigate the scarcity of double-line license plate datasets, we constructed a single/double-line license plate dataset by synthesizing images, applying texture mapping onto real scenes, and blending them with authentic license plate images. Furthermore, to enhance the system's recognition accuracy, we introduce a perspective correction network (PTN) that employs license plate corner coordinate regression as an implicit variable, supervised by license plate view classification information. This network offers improved stability, interpretability, and low annotation costs. The proposed algorithm achieves an average recognition accuracy of 99.34% on the corrected CCPD test set under coarse localization disturbance. When evaluated under fine localization disturbance, the accuracy further improves to 99.58%. On the double-line license plate test set, it achieves an average recognition accuracy of 98.70%, with processing speeds reaching up to 167 frames per second, indicating strong practical applicability.
Via

Jun 08, 2025
Abstract:Real-world surveillance often renders faces and license plates unrecognizable in individual low-resolution (LR) frames, hindering reliable identification. To advance temporal recognition models, we present FANVID, a novel video-based benchmark comprising nearly 1,463 LR clips (180 x 320, 20--60 FPS) featuring 63 identities and 49 license plates from three English-speaking countries. Each video includes distractor faces and plates, increasing task difficulty and realism. The dataset contains 31,096 manually verified bounding boxes and labels. FANVID defines two tasks: (1) face matching -- detecting LR faces and matching them to high-resolution mugshots, and (2) license plate recognition -- extracting text from LR plates without a predefined database. Videos are downsampled from high-resolution sources to ensure that faces and text are indecipherable in single frames, requiring models to exploit temporal information. We introduce evaluation metrics adapted from mean Average Precision at IoU > 0.5, prioritizing identity correctness for faces and character-level accuracy for text. A baseline method with pre-trained video super-resolution, detection, and recognition achieved performance scores of 0.58 (face matching) and 0.42 (plate recognition), highlighting both the feasibility and challenge of the tasks. FANVID's selection of faces and plates balances diversity with recognition challenge. We release the software for data access, evaluation, baseline, and annotation to support reproducibility and extension. FANVID aims to catalyze innovation in temporal modeling for LR recognition, with applications in surveillance, forensics, and autonomous vehicles.
Via

May 09, 2025
Abstract:Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic applications. However, existing studies have relied on private datasets and simplistic degradation models. To address this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple sequential LR and high-resolution (HR) images per vehicle -- five of each -- and two state-of-the-art models for super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP) strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world, adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at: https://valfride.github.io/nascimento2024toward/
* Accepted for publication in the Journal of the Brazilian Computer
Society
Via

Apr 15, 2025
Abstract:Adoption of AI driven techniques in public services remains low due to challenges related to accuracy and speed of information at population scale. Computer vision techniques for traffic monitoring have not gained much popularity despite their relative strength in areas such as autonomous driving. Despite large number of academic methods for Automatic License Plate Recognition (ALPR) systems, very few provide an end to end solution for patrolling in the city. This paper presents a novel prototype for a low power GPU based patrolling system to be deployed in an urban environment on surveillance vehicles for automated vehicle detection, recognition and tracking. In this work, we propose a complete ALPR system for Singapore license plates having both single and double line creating our own YOLO based network. We focus on unconstrained capture scenarios as would be the case in real world application, where the license plate (LP) might be considerably distorted due to oblique views. In this work, we first detect the license plate from the full image using RFB-Net and rectify multiple distorted license plates in a single image. After that, the detected license plate image is fed to our network for character recognition. We evaluate the performance of our proposed system on a newly built dataset covering more than 16,000 images. The system was able to correctly detect license plates with 86\% precision and recognize characters of a license plate in 67\% of the test set, and 89\% accuracy with one incorrect character (partial match). We also test latency of our system and achieve 64FPS on Tesla P4 GPU
* Accepted in IEEE Southeast Con 2025. To be published in IEEEXplore
Via

Apr 08, 2025
Abstract:Optical Character Recognition (OCR) is essential in applications such as document processing, license plate recognition, and intelligent surveillance. However, existing OCR models often underperform in real-world scenarios due to irregular text layouts, poor image quality, character variability, and high computational costs. This paper introduces SDA-Net (Stroke-Sensitive Attention and Dynamic Context Encoding Network), a lightweight and efficient architecture designed for robust single-character recognition. SDA-Net incorporates: (1) a Dual Attention Mechanism to enhance stroke-level and spatial feature extraction; (2) a Dynamic Context Encoding module that adaptively refines semantic information using a learnable gating mechanism; (3) a U-Net-inspired Feature Fusion Strategy for combining low-level and high-level features; and (4) a highly optimized lightweight backbone that reduces memory and computational demands. Experimental results show that SDA-Net achieves state-of-the-art accuracy on challenging OCR benchmarks, with significantly faster inference, making it well-suited for deployment in real-time and edge-based OCR systems.
* 12 pages, 5 figures, 5 tables
Via

Jan 08, 2025
Abstract:Video-based Automatic License Plate Recognition (ALPR) involves extracting vehicle license plate text information from video captures. Traditional systems typically rely heavily on high-end computing resources and utilize multiple frames to recognize license plates, leading to increased computational overhead. In this paper, we propose two methods capable of efficiently extracting exactly one frame per vehicle and recognizing its license plate characters from this single image, thus significantly reducing computational demands. The first method uses Visual Rhythm (VR) to generate time-spatial images from videos, while the second employs Accumulative Line Analysis (ALA), a novel algorithm based on single-line video processing for real-time operation. Both methods leverage YOLO for license plate detection within the frame and a Convolutional Neural Network (CNN) for Optical Character Recognition (OCR) to extract textual information. Experiments on real videos demonstrate that the proposed methods achieve results comparable to traditional frame-by-frame approaches, with processing speeds three times faster.
* Accepted for presentation at the Conference on Graphics, Patterns and
Images (SIBGRAPI) 2024
Via

Jan 08, 2025
Abstract:Automatic License Plate Recognition (ALPR) involves extracting vehicle license plate information from image or a video capture. These systems have gained popularity due to the wide availability of low-cost surveillance cameras and advances in Deep Learning. Typically, video-based ALPR systems rely on multiple frames to detect the vehicle and recognize the license plates. Therefore, we propose a system capable of extracting exactly one frame per vehicle and recognizing its license plate characters from this singular image using an Optical Character Recognition (OCR) model. Early experiments show that this methodology is viable.
* Accepted to CVPR 2024
Via

Jan 08, 2025
Abstract:Super-resolution (SR) techniques play a pivotal role in enhancing the quality of low-resolution images, particularly for applications such as security and surveillance, where accurate license plate recognition is crucial. This study proposes a novel framework that combines pixel-based loss with embedding similarity learning to address the unique challenges of license plate super-resolution (LPSR). The introduced pixel and embedding consistency loss (PECL) integrates a Siamese network and applies contrastive loss to force embedding similarities to improve perceptual and structural fidelity. By effectively balancing pixel-wise accuracy with embedding-level consistency, the framework achieves superior alignment of fine-grained features between high-resolution (HR) and super-resolved (SR) license plates. Extensive experiments on the CCPD dataset validate the efficacy of the proposed framework, demonstrating consistent improvements over state-of-the-art methods in terms of PSNR_RGB, PSNR_Y and optical character recognition (OCR) accuracy. These results highlight the potential of embedding similarity learning to advance both perceptual quality and task-specific performance in extreme super-resolution scenarios.
* Submitted to Neurocomputing
Via

Jan 06, 2025
Abstract:Despite the evident practical importance of license plate recognition (LPR), corresponding research is limited by the volume of publicly available datasets due to privacy regulations such as the General Data Protection Regulation (GDPR). To address this challenge, synthetic data generation has emerged as a promising approach. In this paper, we propose to synthesize realistic license plates (LPs) using diffusion models, inspired by recent advances in image and video generation. In our experiments a diffusion model was successfully trained on a Ukrainian LP dataset, and 1000 synthetic images were generated for detailed analysis. Through manual classification and annotation of the generated images, we performed a thorough study of the model output, such as success rate, character distributions, and type of failures. Our contributions include experimental validation of the efficacy of diffusion models for LP synthesis, along with insights into the characteristics of the generated data. Furthermore, we have prepared a synthetic dataset consisting of 10,000 LP images, publicly available at https://zenodo.org/doi/10.5281/zenodo.13342102. Conducted experiments empirically confirm the usefulness of synthetic data for the LPR task. Despite the initial performance gap between the model trained with real and synthetic data, the expansion of the training data set with pseudolabeled synthetic data leads to an improvement in LPR accuracy by 3% compared to baseline.
* Frontiers in Artificial Intelligence and Applications, Vol. 392,
2024, pp. 4594-4601
Via
