Abstract:In real-world traffic surveillance, vehicle images captured under adverse weather, poor lighting, or high-speed motion often suffer from severe noise and blur. Such degradations significantly reduce the accuracy of license plate recognition systems, especially when the plate occupies only a small region within the full vehicle image. Restoring these degraded images a fast realtime manner is thus a crucial pre-processing step to enhance recognition performance. In this work, we propose a Vertical Residual Autoencoder (VRAE) architecture designed for the image enhancement task in traffic surveillance. The method incorporates an enhancement strategy that employs an auxiliary block, which injects input-aware features at each encoding stage to guide the representation learning process, enabling better general information preservation throughout the network compared to conventional autoencoders. Experiments on a vehicle image dataset with visible license plates demonstrate that our method consistently outperforms Autoencoder (AE), Generative Adversarial Network (GAN), and Flow-Based (FB) approaches. Compared with AE at the same depth, it improves PSNR by about 20%, reduces NMSE by around 50%, and enhances SSIM by 1%, while requiring only a marginal increase of roughly 1% in parameters.
Abstract:Rainfall forecasting in Vietnam is highly challenging due to its diverse climatic conditions and strong geographical variability across river basins, yet accurate and reliable forecasts are vital for flood management, hydropower operation, and disaster preparedness. In this work, we propose a Matrix Profile-based Weighted Ensemble (MPWE), a regime-switching framework that dynamically captures covariant dependencies among multiple geographical model forecasts while incorporating redundancy-aware weighting to balance contributions across models. We evaluate MPWE using rainfall forecasts from eight major basins in Vietnam, spanning five forecast horizons (1 hour and accumulated rainfall over 12, 24, 48, 72, and 84 hours). Experimental results show that MPWE consistently achieves lower mean and standard deviation of prediction errors compared to geographical models and ensemble baselines, demonstrating both improved accuracy and stability across basins and horizons.