This paper investigates whether structural econometric models can rival machine learning in forecasting energy--macro dynamics while retaining causal interpretability. Using monthly data from 1999 to 2025, we develop a unified framework that integrates Time-Varying Parameter Structural VARs (TVP-SVAR) with advanced dependence structures, including DCC-GARCH, t-copulas, and mixed Clayton--Frank--Gumbel copulas. These models are empirically evaluated against leading machine learning techniques Gaussian Process Regression (GPR), Artificial Neural Networks, Random Forests, and Support Vector Regression across seven macro-financial and energy variables, with Brent crude oil as the central asset. The findings reveal three major insights. First, TVP-SVAR consistently outperforms standard VAR models, confirming structural instability in energy transmission channels. Second, copula-based extensions capture non-linear and tail dependence more effectively than symmetric DCC models, particularly during periods of macroeconomic stress. Third, despite their methodological differences, copula-enhanced econometric models and GPR achieve statistically equivalent predictive accuracy (t-test p = 0.8444). However, only the econometric approach provides interpretable impulse responses, regime shifts, and tail-risk diagnostics. We conclude that machine learning can replicate predictive performance but cannot substitute the explanatory power of structural econometrics. This synthesis offers a pathway where AI accuracy and economic interpretability jointly inform energy policy and risk management.
Large language models (LLMs) have made it remarkably easy to synthesize plausible source code from natural language prompts. While this accelerates software development and supports learning, it also raises new risks for academic integrity, authorship attribution, and responsible AI use. This paper investigates the problem of distinguishing human-written from machine-generated code by comparing two complementary approaches: feature-based detectors built from lightweight, interpretable stylometric and structural properties of code, and embedding-based detectors leveraging pretrained code encoders. Using a recent large-scale benchmark dataset of 600k human-written and AI-generated code samples, we find that feature-based models achieve strong performance (ROC-AUC 0.995, PR-AUC 0.995, F1 0.971), while embedding-based models with CodeBERT embeddings are also very competitive (ROC-AUC 0.994, PR-AUC 0.994, F1 0.965). Analysis shows that features tied to indentation and whitespace provide particularly discriminative cues, whereas embeddings capture deeper semantic patterns and yield slightly higher precision. These findings underscore the trade-offs between interpretability and generalization, offering practical guidance for deploying robust code-origin detection in academic and industrial contexts.
Injury occurrence in football poses significant challenges for athletes and teams, carrying personal, competitive, and financial consequences. While machine learning has been applied to injury prediction before, existing approaches often rely on static pre-season data and binary outcomes, limiting their real-world utility. This study investigates the feasibility of using a DeepHit neural network to forecast time-to-injury from longitudinal athlete monitoring data, while providing interpretable predictions. The analysis utilised the publicly available SoccerMon dataset, containing two seasons of training, match, and wellness records from elite female footballers. Data was pre-processed through cleaning, feature engineering, and the application of three imputation strategies. Baseline models (Random Forest, XGBoost, Logistic Regression) were optimised via grid search for benchmarking, while the DeepHit model, implemented with a multilayer perceptron backbone, was evaluated using chronological and leave-one-player-out (LOPO) validation. DeepHit achieved a concordance index of 0.762, outperforming baseline models and delivering individualised, time-varying risk estimates. Shapley Additive Explanations (SHAP) identified clinically relevant predictors consistent with established risk factors, enhancing interpretability. Overall, this study provides a novel proof of concept: survival modelling with DeepHit shows strong potential to advance injury forecasting in football, offering accurate, explainable, and actionable insights for injury prevention across competitive levels.
Predicting the status of Major Depressive Disorder (MDD) from objective, non-invasive methods is an active research field. Yet, extracting automatically objective, interpretable features for a detailed analysis of the patient state remains largely unexplored. Among MDD's symptoms, Psychomotor retardation (PMR) is a core item, yet its clinical assessment remains largely subjective. While 3D motion capture offers an objective alternative, its reliance on specialized hardware often precludes routine clinical use. In this paper, we propose a non-invasive computational framework that transforms monocular RGB video into clinically relevant 3D gait kinematics. Our pipeline uses Gravity-View Coordinates along with a novel trajectory-correction algorithm that leverages the closed-loop topology of our adapted Timed Up and Go (TUG) protocol to mitigate monocular depth errors. This novel pipeline enables the extraction of 297 explicit gait biomechanical biomarkers from a single camera capture. To address the challenges of small clinical datasets, we introduce a stability-based machine learning framework that identifies robust motor signatures while preventing overfitting. Validated on the CALYPSO dataset, our method achieves an 83.3% accuracy in detecting PMR and explains 64% of the variance in overall depression severity (R^2=0.64). Notably, our study reveals a strong link between reduced ankle propulsion and restricted pelvic mobility to the depressive motor phenotype. These results demonstrate that physical movement serves as a robust proxy for the cognitive state, offering a transparent and scalable tool for the objective monitoring of depression in standard clinical environments.
Wastewater treatment plants consume 1-3% of global electricity, making accurate energy forecasting critical for operational optimization and sustainability. While machine learning models provide point predictions, they lack explainable uncertainty quantification essential for risk-aware decision-making in safety-critical infrastructure. This study develops an Interval Type-2 Adaptive Neuro-Fuzzy Inference System (IT2-ANFIS) that generates interpretable prediction intervals through fuzzy rule structures. Unlike black-box probabilistic methods, the proposed framework decomposes uncertainty across three levels: feature-level, footprint of uncertainty identify which variables introduce ambiguity, rule-level analysis reveals confidence in local models, and instance-level intervals quantify overall prediction uncertainty. Validated on Melbourne Water's Eastern Treatment Plant dataset, IT2-ANFIS achieves comparable predictive performance to first order ANFIS with substantially reduced variance across training runs, while providing explainable uncertainty estimates that link prediction confidence directly to operational conditions and input variables.
Many challenges arising in Quantum Technology can be successfully addressed using a set of machine learning algorithms collectively known as reinforcement learning (RL), based on adaptive decision-making through interaction with the quantum device. After a concise and intuitive introduction to RL aimed at a broad physics readership, we discuss the key ideas and core concepts in reinforcement learning with a particular focus on quantum systems. We then survey recent progress in RL in all relevant areas. We discuss state preparation in few- and many-body quantum systems, the design and optimization of high-fidelity quantum gates, and the automated construction of quantum circuits, including applications to variational quantum eigensolvers and architecture search. We further highlight the interactive capabilities of RL agents, emphasizing recent progress in quantum feedback control and quantum error correction, and briefly discuss quantum reinforcement learning as well as applications to quantum metrology. The review concludes with a discussion of open challenges -- such as scalability, interpretability, and integration with experimental platforms -- and outlines promising directions for future research. Throughout, we highlight experimental implementations that exemplify the increasing role of reinforcement learning in shaping the development of quantum technologies.
Cardiovascular disease (CVD) remains the foremost cause of mortality worldwide, underscoring the urgent need for intelligent and data-driven diagnostic tools. Traditional predictive models often struggle to generalize across heterogeneous datasets and complex physiological patterns. To address this, we propose a hybrid ensemble framework that integrates deep learning architectures, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), with classical machine learning algorithms, including K-Nearest Neighbor (KNN) and Extreme Gradient Boosting (XGB), using an ensemble voting mechanism. This approach combines the representational power of deep networks with the interpretability and efficiency of traditional models. Experiments on two publicly available Kaggle datasets demonstrate that the proposed model achieves superior performance, reaching 82.30 percent accuracy on Dataset I and 97.10 percent on Dataset II, with consistent gains in precision, recall, and F1-score. These findings underscore the robustness and clinical potential of hybrid AI frameworks for predicting cardiovascular disease and facilitating early intervention. Furthermore, this study directly supports the United Nations Sustainable Development Goal 3 (Good Health and Well-being) by promoting early diagnosis, prevention, and management of non-communicable diseases through innovative, data-driven healthcare solutions.
Counterfactual explanations (CEs) offer interpretable insights into machine learning predictions by answering ``what if?" questions. However, in real-world settings where models are frequently updated, existing counterfactual explanations can quickly become invalid or unreliable. In this paper, we introduce Probabilistically Safe CEs (PSCE), a method for generating counterfactual explanations that are $δ$-safe, to ensure high predictive confidence, and $ε$-robust to ensure low predictive variance. Based on Bayesian principles, PSCE provides formal probabilistic guarantees for CEs under model changes which are adhered to in what we refer to as the $\langle δ, ε\rangle$-set. Uncertainty-aware constraints are integrated into our optimization framework and we validate our method empirically across diverse datasets. We compare our approach against state-of-the-art Bayesian CE methods, where PSCE produces counterfactual explanations that are not only more plausible and discriminative, but also provably robust under model change.
Despite the tremendous success of neural networks, benign images can be corrupted by adversarial perturbations to deceive these models. Intriguingly, images differ in their attackability. Specifically, given an attack configuration, some images are easily corrupted, whereas others are more resistant. Evaluating image attackability has important applications in active learning, adversarial training, and attack enhancement. This prompts a growing interest in developing attackability measures. However, existing methods are scarce and suffer from two major limitations: (1) They rely on a model proxy to provide prior knowledge (e.g., gradients or minimal perturbation) to extract model-dependent image features. Unfortunately, in practice, many task-specific models are not readily accessible. (2) Extracted features characterizing image attackability lack visual interpretability, obscuring their direct relationship with the images. To address these, we propose a novel Object Texture Intensity (OTI), a model-free and visually interpretable measure of image attackability, which measures image attackability as the texture intensity of the image's semantic object. Theoretically, we describe the principles of OTI from the perspectives of decision boundaries as well as the mid- and high-frequency characteristics of adversarial perturbations. Comprehensive experiments demonstrate that OTI is effective and computationally efficient. In addition, our OTI provides the adversarial machine learning community with a visual understanding of attackability.
Agentic systems have transformed how Large Language Models (LLMs) can be leveraged to create autonomous systems with goal-directed behaviors, consisting of multi-step planning and the ability to interact with different environments. These systems differ fundamentally from traditional machine learning models, both in architecture and deployment, introducing unique AI safety challenges, including goal misalignment, compounding decision errors, and coordination risks among interacting agents, that necessitate embedding interpretability and explainability by design to ensure traceability and accountability across their autonomous behaviors. Current interpretability techniques, developed primarily for static models, show limitations when applied to agentic systems. The temporal dynamics, compounding decisions, and context-dependent behaviors of agentic systems demand new analytical approaches. This paper assesses the suitability and limitations of existing interpretability methods in the context of agentic systems, identifying gaps in their capacity to provide meaningful insight into agent decision-making. We propose future directions for developing interpretability techniques specifically designed for agentic systems, pinpointing where interpretability is required to embed oversight mechanisms across the agent lifecycle from goal formation, through environmental interaction, to outcome evaluation. These advances are essential to ensure the safe and accountable deployment of agentic AI systems.