Abstract:The growing instability of both global and domestic economic environments has increased the risk of financial distress at the household level. However, traditional econometric models often rely on delayed and aggregated data, limiting their effectiveness. This study introduces a machine learning-based early warning system that utilizes real-time digital and macroeconomic signals to identify financial distress in near real-time. Using a panel dataset of 750 households tracked over three monitoring rounds spanning 13 months, the framework combines socioeconomic attributes, macroeconomic indicators (such as GDP growth, inflation, and foreign exchange fluctuations), and digital economy measures (including ICT demand and market volatility). Through data preprocessing and feature engineering, we introduce lagged variables, volatility measures, and interaction terms to capture both gradual and sudden changes in financial stability. We benchmark baseline classifiers, such as logistic regression and decision trees, against advanced ensemble models including random forests, XGBoost, and LightGBM. Our results indicate that the engineered features from the digital economy significantly enhance predictive accuracy. The system performs reliably for both binary distress detection and multi-class severity classification, with SHAP-based explanations identifying inflation volatility and ICT demand as key predictors. Crucially, the framework is designed for scalable deployment in national agencies and low-bandwidth regional offices, ensuring it is accessible for policymakers and practitioners. By implementing machine learning in a transparent and interpretable manner, this study demonstrates the feasibility and impact of providing near-real-time early warnings of financial distress. This offers actionable insights that can strengthen household resilience and guide preemptive intervention strategies.
Abstract:The rise of digital payments has accelerated the need for intelligent and scalable systems to detect fraud. This research presents an end-to-end, feature-rich machine learning framework for detecting credit card transaction anomalies and fraud using real-world data. The study begins by merging transactional, cardholder, merchant, and merchant category datasets from a relational database to create a unified analytical view. Through the feature engineering process, we extract behavioural signals such as average spending, deviation from historical patterns, transaction timing irregularities, and category frequency metrics. These features are enriched with temporal markers such as hour, day of week, and weekend indicators to expose all latent patterns that indicate fraudulent behaviours. Exploratory data analysis reveals contextual transaction trends across all the dataset features. Using the transactional data, we train and evaluate a range of unsupervised models: Isolation Forest, One Class SVM, and a deep autoencoder trained to reconstruct normal behavior. These models flag the top 1% of reconstruction errors as outliers. PCA visualizations illustrate each models ability to separate anomalies into a two-dimensional latent space. We further segment the transaction landscape using K-Means clustering and DBSCAN to identify dense clusters of normal activity and isolate sparse, suspicious regions.
Abstract:The dramatic adoption of Bitcoin and other cryptocurrencies in the USA has revolutionized the financial landscape and provided unprecedented investment and transaction efficiency opportunities. The prime objective of this research project is to develop machine learning algorithms capable of effectively identifying and tracking suspicious activity in Bitcoin wallet transactions. With high-tech analysis, the study aims to create a model with a feature for identifying trends and outliers that can expose illicit activity. The current study specifically focuses on Bitcoin transaction information in America, with a strong emphasis placed on the importance of knowing about the immediate environment in and through which such transactions pass through. The dataset is composed of in-depth Bitcoin wallet transactional information, including important factors such as transaction values, timestamps, network flows, and addresses for wallets. All entries in the dataset expose information about financial transactions between wallets, including received and sent transactions, and such information is significant for analysis and trends that can represent suspicious activity. This study deployed three accredited algorithms, most notably, Logistic Regression, Random Forest, and Support Vector Machines. In retrospect, Random Forest emerged as the best model with the highest F1 Score, showcasing its ability to handle non-linear relationships in the data. Insights revealed significant patterns in wallet activity, such as the correlation between unredeemed transactions and final balances. The application of machine algorithms in tracking cryptocurrencies is a tool for creating transparent and secure U.S. markets.