This paper presents a comprehensive approach to singularity detection and avoidance in UR10 robotic arm path planning through the integration of fuzzy logic safety systems and reinforcement learning algorithms. The proposed system addresses critical challenges in robotic manipulation where singularities can cause loss of control and potential equipment damage. Our hybrid approach combines real-time singularity detection using manipulability measures, condition number analysis, and fuzzy logic decision-making with a stable reinforcement learning framework for adaptive path planning. Experimental results demonstrate a 90% success rate in reaching target positions while maintaining safe distances from singular configurations. The system integrates PyBullet simulation for training data collection and URSim connectivity for real-world deployment.
Monitoring states of road surfaces provides valuable information for the planning and controlling vehicles and active vehicle control systems. Classical road monitoring methods are expensive and unsystematic because they require time for measurements. This article proposes an real time system based on weather conditional data and road surface condition data. For this purpose, we collected data with a mobile phone camera on the roads around the campus of the Karlsruhe Institute of Technology. We tested a large number of different image-based deep learning algorithms for road classification. In addition, we used road acceleration data along with road image data for training by using them as images. We compared the performances of acceleration-based and camera image-based approaches. The performances of the simple Alexnet, LeNet, VGG, and Resnet algorithms were compared as deep learning algorithms. For road condition classification, 5 classes were considered: asphalt, damaged asphalt, gravel road, damaged gravel road, pavement road and over 95% accuracy performance was achieved. It is also proposed to use the acceleration or the camera image to classify the road surface according to the weather and the time of day using fuzzy logic.
Fuzzy rule-based systems have been mostly used in interpretable decision-making because of their interpretable linguistic rules. However, interpretability requires both sensible linguistic partitions and small rule-base sizes, which are not guaranteed by many existing fuzzy rule-mining algorithms. Evolutionary approaches can produce high-quality models but suffer from prohibitive computational costs, while neural-based methods like ANFIS have problems retaining linguistic interpretations. In this work, we propose an adaptation of classical tree-based splitting algorithms from crisp rules to fuzzy trees, combining the computational efficiency of greedy algoritms with the interpretability advantages of fuzzy logic. This approach achieves interpretable linguistic partitions and substantially improves running time compared to evolutionary-based approaches while maintaining competitive predictive performance. Our experiments on tabular classification benchmarks proof that our method achieves comparable accuracy to state-of-the-art fuzzy classifiers with significantly lower computational cost and produces more interpretable rule bases with constrained complexity. Code is available in: https://github.com/Fuminides/fuzzy_greedy_tree_public
Shading faults remain one of the most critical challenges affecting photovoltaic (PV) system efficiency, as they not only reduce power generation but also disturb maximum power point tracking (MPPT). To address this issue, this study introduces a hybrid optimization framework that combines Fuzzy Logic Control (FLC) with a Shading-Aware Particle Swarm Optimization (SA-PSO) method. The proposed scheme is designed to adapt dynamically to both partial shading (20%-80%) and complete shading events, ensuring reliable global maximum power point (GMPP) detection. In this approach, the fuzzy controller provides rapid decision support based on shading patterns, while SA-PSO accelerates the search process and prevents the system from becoming trapped in local minima. A comparative performance assessment with the conventional Perturb and Observe (P\&O) algorithm highlights the advantages of the hybrid model, showing up to an 11.8% improvement in power output and a 62% reduction in tracking time. These results indicate that integrating intelligent control with shading-aware optimization can significantly enhance the resilience and energy yield of PV systems operating under complex real-world conditions.
Label learning is a fundamental task in machine learning that aims to construct intelligent models using labeled data, encompassing traditional single-label and multi-label classification models. Traditional methods typically rely on logical labels, such as binary indicators (e.g., "yes/no") that specify whether an instance belongs to a given category. However, in practical applications, label annotations often involve significant uncertainty due to factors such as data noise, inherent ambiguity in the observed entities, and the subjectivity of human annotators. Therefore, representing labels using simplistic binary logic can obscure valuable information and limit the expressiveness of label learning models. To overcome this limitation, this paper introduces the concept of fuzzy labels, grounded in fuzzy set theory, to better capture and represent label uncertainty. We further propose an efficient fuzzy labeling method that mines and generates fuzzy labels from the original data, thereby enriching the label space with more informative and nuanced representations. Based on this foundation, we present fuzzy-label-enhanced algorithms for both single-label and multi-label learning, using the classical K-Nearest Neighbors (KNN) and multi-label KNN algorithms as illustrative examples. Experimental results indicate that fuzzy labels can more effectively characterize the real-world labeling information and significantly enhance the performance of label learning models.
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
This study introduces a Fractional Order Fuzzy PID (FOFPID) controller that uses the Whale Optimization Algorithm (WOA) to manage the Bispectral Index (BIS), keeping it within the ideal range of forty to sixty. The FOFPID controller combines fuzzy logic for adapting to changes and fractional order dynamics for fine tuning. This allows it to adjust its control gains to handle a person's unique physiology. The WOA helps fine tune the controller's parameters, including the fractional orders and the fuzzy membership functions, which boosts its performance. Tested on models of eight different patient profiles, the FOFPID controller performed better than a standard Fractional Order PID (FOPID) controller. It achieved faster settling times, at two and a half minutes versus three point two minutes, and had a lower steady state error, at zero point five versus one point two. These outcomes show the FOFPID's excellent strength and accuracy. It offers a scalable, artificial intelligence driven solution for automated anesthesia delivery that could enhance clinical practice and improve patient results.
The "all-or-nothing" clause evaluation strategy is a core mechanism in the Tsetlin Machine (TM) family of algorithms. In this approach, each clause - a logical pattern composed of binary literals mapped to input data - is disqualified from voting if even a single literal fails. Due to this strict requirement, standard TMs must employ thousands of clauses to achieve competitive accuracy. This paper introduces the Fuzzy-Pattern Tsetlin Machine (FPTM), a novel variant where clause evaluation is fuzzy rather than strict. If some literals in a clause fail, the remaining ones can still contribute to the overall vote with a proportionally reduced score. As a result, each clause effectively consists of sub-patterns that adapt individually to the input, enabling more flexible, efficient, and robust pattern matching. The proposed fuzzy mechanism significantly reduces the required number of clauses, memory footprint, and training time, while simultaneously improving accuracy. On the IMDb dataset, FPTM achieves 90.15% accuracy with only one clause per class, a 50x reduction in clauses and memory over the Coalesced Tsetlin Machine. FPTM trains up to 316x faster (45 seconds vs. 4 hours) and fits within 50 KB, enabling online learning on microcontrollers. Inference throughput reaches 34.5 million predictions/second (51.4 GB/s). On Fashion-MNIST, accuracy reaches 92.18% (2 clauses), 93.19% (20 clauses) and 94.68% (8000 clauses), a ~400x clause reduction compared to the Composite TM's 93.00% (8000 clauses). On the Amazon Sales dataset with 20% noise, FPTM achieves 85.22% accuracy, significantly outperforming the Graph Tsetlin Machine (78.17%) and a Graph Convolutional Neural Network (66.23%).
The combination of higher-order theories and fuzzy logic can be useful in decision-making tasks that involve reasoning across abstract functions and predicates, where exact matches are often rare or unnecessary. Developing efficient reasoning and computational techniques for such a combined formalism presents a significant challenge. In this paper, we adopt a more straightforward approach aiming at integrating two well-established and computationally well-behaved components: higher-order patterns on one side and fuzzy equivalences expressed through similarity relations based on minimum T-norm on the other. We propose a unification algorithm for higher-order patterns modulo these similarity relations and prove its termination, soundness, and completeness. This unification problem, like its crisp counterpart, is unitary. The algorithm computes a most general unifier with the highest degree of approximation when the given terms are unifiable.
Recently, description logic LE-ALC was introduced for reasoning in the semantic environment of enriched formal contexts, and a polynomial-time tableaux algorithm was developed to check the consistency of knowledge bases with acyclic TBoxes. In this work, we introduce a fuzzy generalization of LE-ALC called LE-FALC which provides a description logic counterpart of many-valued normal non-distributive logic a.k.a. many-valued LE-logic. This description logic can be used to represent and reason about knowledge in the formal framework of fuzzy formal contexts and fuzzy formal concepts. We provide a tableaux algorithm that provides a complete and sound polynomial-time decision procedure to check the consistency of LE-FALC ABoxes. As a result, we also obtain an exponential-time decision procedure for checking the consistency of LE-FALC with acyclic TBoxes by unraveling.