The Complete Vocal Technique (CVT) is a school of singing developed in the past decades by Cathrin Sadolin et al.. CVT groups the use of the voice into so called vocal modes, namely Neutral, Curbing, Overdrive and Edge. Knowledge of the desired vocal mode can be helpful for singing students. Automatic classification of vocal modes can thus be important for technology-assisted singing teaching. Previously, automatic classification of vocal modes has been attempted without major success, potentially due to a lack of data. Therefore, we recorded a novel vocal mode dataset consisting of sustained vowels recorded from four singers, three of which professional singers with more than five years of CVT-experience. The dataset covers the entire vocal range of the subjects, totaling 3,752 unique samples. By using four microphones, thereby offering a natural data augmentation, the dataset consists of more than 13,000 samples combined. An annotation was created using three CVT-experienced annotators, each providing an individual annotation. The merged annotation as well as the three individual annotations come with the published dataset. Additionally, we provide some baseline classification results. The best balanced accuracy across a 5-fold cross validation of 81.3\,\% was achieved with a ResNet18. The dataset can be downloaded under https://zenodo.org/records/14276415.
As Industrial Internet of Things (IIoT) environments expand to include tens of thousands of connected devices. The centralization of security monitoring architectures creates serious latency issues that savvy attackers can exploit to compromise an entire manufacturing ecosystem. This paper outlines a new, decentralized multi-agent swarm (DMAS) architecture that includes autonomous artificial intelligence (AI) agents at each edge gateway, functioning as a distributed digital "immune system" for IIoT networks. Instead of using a traditional static firewall approach, the DMAS agents communicate via a lightweight peer-to-peer protocol to cooperatively detect anomalous behavior across the IIoT network without sending data to a cloud infrastructure. The authors also outline a consensus-based threat validation (CVT) process in which agents vote on the threat level of an identified threat, enabling instant quarantine of a compromised node or nodes. The authors conducted experiments on a testbed that simulated an innovative factory environment with 2000 IIoT devices and found that the DMAS demonstrated sub-millisecond response times (average of 0.85ms), 97.3% accuracy in detecting malicious activity under high load, and 87% accuracy in detecting zero-day attacks. All significantly higher than baseline values for both centralized and edge computing. Additionally, the proposed architecture can prevent real-time cascading failures in industrial control systems and reduce network bandwidth use by 89% compared to cloud-based solutions.
Accurate grading of corn kernels is critical for seed certification, directional seeding, and breeding, yet it is still predominantly performed by manual inspection. This work introduces CornViT, a three-stage Convolutional Vision Transformer (CvT) framework that emulates the hierarchical reasoning of human seed analysts for single-kernel evaluation. Three sequential CvT-13 classifiers operate on 384x384 RGB images: Stage 1 distinguishes pure from impure kernels; Stage 2 categorizes pure kernels into flat and round morphologies; and Stage 3 determines the embryo orientation (up vs. down) for pure, flat kernels. Starting from a public corn seed image collection, we manually relabeled and filtered images to construct three stage-specific datasets: 7265 kernels for purity, 3859 pure kernels for morphology, and 1960 pure-flat kernels for embryo orientation, all released as benchmarks. Head-only fine-tuning of ImageNet-22k pretrained CvT-13 backbones yields test accuracies of 93.76% for purity, 94.11% for shape, and 91.12% for embryo-orientation detection. Under identical training conditions, ResNet-50 reaches only 76.56 to 81.02 percent, whereas DenseNet-121 attains 86.56 to 89.38 percent accuracy. These results highlight the advantages of convolution-augmented self-attention for kernel analysis. To facilitate adoption, we deploy CornViT in a Flask-based web application that performs stage-wise inference and exposes interpretable outputs through a browser interface. Together, the CornViT framework, curated datasets, and web application provide a deployable solution for automated corn kernel quality assessment in seed quality workflows. Source code and data are publicly available.
Twisted String Actuators (TSAs) are widely used in robotics but suffer from a limited range of Transmission Ratio (TR) variation, restricting their efficiency under varying loads.To overcome this, we propose a novel lightweight, simple-structured Continuously Variable Transmission (CVT) mechanism for TSA utilizing Shape Memory Alloy (SMA) superelasticity. The CVT mechanism consists solely of a pair of highly lightweight superelastic SMA rods connecting the ends of twisted strings. These rods deform under external loads, adjusting the inter-string distance to enable continuous TR variation.We develop a comprehensive theoretical model that integrates three critical nonlinearities
Convolutional Neural Networks (CNNs) for computer vision sometimes struggle with understanding images in a global context, as they mainly focus on local patterns. On the other hand, Vision Transformers (ViTs), inspired by models originally created for language processing, use self-attention mechanisms, which allow them to understand relationships across the entire image. In this paper, we compare different types of ViTs (pure, hierarchical, and hybrid) against traditional CNN models across various tasks, including object recognition, detection, and medical image classification. We conduct thorough tests on standard datasets like ImageNet for image classification and COCO for object detection. Additionally, we apply these models to medical imaging using the ChestX-ray14 dataset. We find that hybrid and hierarchical transformers, especially Swin and CvT, offer a strong balance between accuracy and computational resources. Furthermore, by experimenting with data augmentation techniques on medical images, we discover significant performance improvements, particularly with the Swin Transformer model. Overall, our results indicate that Vision Transformers are competitive and, in many cases, outperform traditional CNNs, especially in scenarios requiring the understanding of global visual contexts like medical imaging.
Photoplethysmography (PPG) signals, which measure changes in blood volume in the skin using light, have recently gained attention in biometric authentication because of their non-invasive acquisition, inherent liveness detection, and suitability for low-cost wearable devices. However, PPG signal quality is challenged by motion artifacts, illumination changes, and inter-subject physiological variability, making robust feature extraction and classification crucial. This study proposes a lightweight and cost-effective biometric authentication framework based on PPG signals extracted from low-frame-rate fingertip videos. The CFIHSR dataset, comprising PPG recordings from 46 subjects at a sampling rate of 14 Hz, is employed for evaluation. The raw PPG signals undergo a standard preprocessing pipeline involving baseline drift removal, motion artifact suppression using Principal Component Analysis (PCA), bandpass filtering, Fourier-based resampling, and amplitude normalization. To generate robust representations, each one-dimensional PPG segment is converted into a two-dimensional time-frequency scalogram via the Continuous Wavelet Transform (CWT), effectively capturing transient cardiovascular dynamics. We developed a hybrid deep learning model, termed CVT-ConvMixer-LSTM, by combining spatial features from the Convolutional Vision Transformer (CVT) and ConvMixer branches with temporal features from a Long Short-Term Memory network (LSTM). The experimental results on 46 subjects demonstrate an authentication accuracy of 98%, validating the robustness of the model to noise and variability between subjects. Due to its efficiency, scalability, and inherent liveness detection capability, the proposed system is well-suited for real-world mobile and embedded biometric security applications.
Bird's-Eye View (BEV) maps provide a structured, top-down abstraction that is crucial for autonomous-driving perception. In this work, we employ Cross-View Transformers (CVT) for learning to map camera images to three BEV's channels - road, lane markings, and planned trajectory - using a realistic simulator for urban driving. Our study examines generalization to unseen towns, the effect of different camera layouts, and two loss formulations (focal and L1). Using training data from only a town, a four-camera CVT trained with the L1 loss delivers the most robust test performance, evaluated in a new town. Overall, our results underscore CVT's promise for mapping camera inputs to reasonably accurate BEV maps.
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.
Cervical cancer remains a significant health challenge, with high incidence and mortality rates, particularly in transitioning countries. Conventional Liquid-Based Cytology(LBC) is a labor-intensive process, requires expert pathologists and is highly prone to errors, highlighting the need for more efficient screening methods. This paper introduces an innovative approach that integrates low-cost biological microscopes with our simple and efficient AI algorithms for automated whole-slide analysis. Our system uses a motorized microscope to capture cytology images, which are then processed through an AI pipeline involving image stitching, cell segmentation, and classification. We utilize the lightweight UNet-based model involving human-in-the-loop approach to train our segmentation model with minimal ROIs. CvT-based classification model, trained on the SIPaKMeD dataset, accurately categorizes five cell types. Our framework offers enhanced accuracy and efficiency in cervical cancer screening compared to various state-of-art methods, as demonstrated by different evaluation metrics.
Knowledge graph embedding (KGE) models are extensively studied for knowledge graph completion, yet their evaluation remains constrained by unrealistic benchmarks. Commonly used datasets are either faulty or too small to reflect real-world data. Few studies examine the role of mediator nodes, which are essential for modeling n-ary relationships, or investigate model performance variation across domains. Standard evaluation metrics rely on the closed-world assumption, which penalizes models for correctly predicting missing triples, contradicting the fundamental goals of link prediction. These metrics often compress accuracy assessment into a single value, obscuring models' specific strengths and weaknesses. The prevailing evaluation protocol operates under the unrealistic assumption that an entity's properties, for which values are to be predicted, are known in advance. While alternative protocols such as property prediction, entity-pair ranking and triple classification address some of these limitations, they remain underutilized. This paper conducts a comprehensive evaluation of four representative KGE models on large-scale datasets FB-CVT-REV and FB+CVT-REV. Our analysis reveals critical insights, including substantial performance variations between small and large datasets, both in relative rankings and absolute metrics, systematic overestimation of model capabilities when n-ary relations are binarized, and fundamental limitations in current evaluation protocols and metrics.