Jul 29, 2025
Abstract:The analysis of fundus images is critical for the early detection and diagnosis of retinal diseases such as Diabetic Retinopathy (DR), Glaucoma, and Age-related Macular Degeneration (AMD). Traditional diagnostic workflows, however, often depend on manual interpretation and are both time- and resource-intensive. To address these limitations, we propose an automated and interpretable clinical decision support framework based on a hybrid feature extraction model called HOG-CNN. Our key contribution lies in the integration of handcrafted Histogram of Oriented Gradients (HOG) features with deep convolutional neural network (CNN) representations. This fusion enables our model to capture both local texture patterns and high-level semantic features from retinal fundus images. We evaluated our model on three public benchmark datasets: APTOS 2019 (for binary and multiclass DR classification), ORIGA (for Glaucoma detection), and IC-AMD (for AMD diagnosis); HOG-CNN demonstrates consistently high performance. It achieves 98.5\% accuracy and 99.2 AUC for binary DR classification, and 94.2 AUC for five-class DR classification. On the IC-AMD dataset, it attains 92.8\% accuracy, 94.8\% precision, and 94.5 AUC, outperforming several state-of-the-art models. For Glaucoma detection on ORIGA, our model achieves 83.9\% accuracy and 87.2 AUC, showing competitive performance despite dataset limitations. We show, through comprehensive appendix studies, the complementary strength of combining HOG and CNN features. The model's lightweight and interpretable design makes it particularly suitable for deployment in resource-constrained clinical environments. These results position HOG-CNN as a robust and scalable tool for automated retinal disease screening.
* 13 pages; 5 figures
Via
