We propose a new convex loss for Support Vector Machines, both for the binary classification and for the regression models. Therefore, we show the mathematical derivation of the dual problems and we experiment with them on several small datasets. The minimal dimension of those datasets is due to the difficult scalability of the SVM method to bigger instances. This preliminary study should prove that using pattern correlations inside the loss function could enhance the generalisation performances. Our method consistently achieved comparable or superior performance, with improvements of up to 2.0% in F1 scores for classification tasks and 1.0% reduction in Mean Squared Error (MSE) for regression tasks across various datasets, compared to standard losses. Coherently, results show that generalisation measures are never worse than the standard losses and several times they are better. In our opinion, it should be considered a careful study of this loss, coupled with shallow and deep neural networks. In fact, we present some novel results obtained with those architectures.
We propose a new convex loss for SVMs, both for the binary classification and for the regression models. Therefore, we show the mathematical derivation of the dual problems and we experiment them with several small data-sets. The minimal dimension of those data-sets is due to the difficult scalability of the SVM method to bigger instances. This preliminary study should prove that using pattern correlations inside the loss function could enhance the generalisation performances. Coherently, results show that generalisation measures are never worse than the standard losses and several times they are better. In our opinion, it should be considered a careful study of this loss, coupled with shallow and deep neural networks. In fact, we present some novel results obtained with those architectures.
We study the supervised training dynamics of neural classifiers through the lens of binary hypothesis testing. We model classification as a set of binary tests between class-conditional distributions of representations and empirically show that, along training trajectories, well-generalizing networks increasingly align with Neyman-Pearson optimal decision rules via monotonic improvements in KL divergence that relate to error rate exponents. We finally discuss how this yields an explanation and possible training or regularization strategies for different classes of neural networks.
Accurate sensor-to-vehicle calibration is essential for safe autonomous driving. Angular misalignments of LiDAR sensors can lead to safety-critical issues during autonomous operation. However, current methods primarily focus on correcting sensor-to-sensor errors without considering the miscalibration of individual sensors that cause these errors in the first place. We introduce FlowCalib, the first framework that detects LiDAR-to-vehicle miscalibration using motion cues from the scene flow of static objects. Our approach leverages the systematic bias induced by rotational misalignment in the flow field generated from sequential 3D point clouds, eliminating the need for additional sensors. The architecture integrates a neural scene flow prior for flow estimation and incorporates a dual-branch detection network that fuses learned global flow features with handcrafted geometric descriptors. These combined representations allow the system to perform two complementary binary classification tasks: a global binary decision indicating whether misalignment is present and separate, axis-specific binary decisions indicating whether each rotational axis is misaligned. Experiments on the nuScenes dataset demonstrate FlowCalib's ability to robustly detect miscalibration, establishing a benchmark for sensor-to-vehicle miscalibration detection.
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that is challenging to diagnose and requires advanced approaches for reliable and transparent identification and classification. It is characterized by a pattern of inattention, hyperactivity and impulsivity that is more severe and more frequent than in individuals with a comparable level of development. In this paper, an explainable framework based on a fine-tuned hybrid Deep Neural Network (DNN) and Recurrent Neural Network (RNN) called HyExDNN-RNN model is proposed for ADHD detection, multi-class categorization, and decision interpretation. This framework not only detects ADHD, but also provides interpretable insights into the diagnostic process so that psychologists can better understand and trust the results of the diagnosis. We use the Pearson correlation coefficient for optimal feature selection and machine and deep learning models for experimental analysis and comparison. We use a standardized technique for feature reduction, model selection and interpretation to accurately determine the diagnosis rate and ensure the interpretability of the proposed framework. Our framework provided excellent results on binary classification, with HyExDNN-RNN achieving an F1 score of 99% and 94.2% on multi-class categorization. XAI approaches, in particular SHapley Additive exPlanations (SHAP) and Permutation Feature Importance (PFI), provided important insights into the importance of features and the decision logic of models. By combining AI with human expertise, we aim to bridge the gap between advanced computational techniques and practical psychological applications. These results demonstrate the potential of our framework to assist in ADHD diagnosis and interpretation.
Post-endoscopic gastrointestinal (GI) rebleeding frequently occurs within the first 72 hours after therapeutic hemostasis and remains a major cause of early morbidity and mortality. Existing non-invasive monitoring approaches primarily provide binary blood detection and lack quantitative assessment of bleeding severity or flow dynamic, limiting their ability to support timely clinical decision-making during this high-risk period. In this work, we developed a capsule-sized, multi-wavelength optical sensing wireless platform for order-of-magnitude-level classification of GI bleeding flow rate, leveraging transmission spectroscopy and low-power edge artificial intelligence. The system performs time-resolved, multi-spectral measurements and employs a lightweight two-dimensional convolutional neural network for on-device flow-rate classification, with physics-based validation confirming consistency with wavelength-dependent hemoglobin absorption behavior. In controlled in vitro experiments under simulated gastric conditions, the proposed approach achieved an overall classification accuracy of 98.75% across multiple bleeding flow-rate levels while robustly distinguishing diverse non-blood gastrointestinal interference. By performing embedded inference directly on the capsule electronics, the system reduced overall energy consumption by approximately 88% compared with continuous wireless transmission of raw data, making prolonged, battery-powered operation feasible. Extending capsule-based diagnostics beyond binary blood detection toward continuous, site-specific assessment of bleeding severity, this platform has the potential to support earlier identification of clinically significant rebleeding and inform timely re-intervention during post-endoscopic surveillance.
The Arabic language has undergone notable transformations over time, including the emergence of new vocabulary, the obsolescence of others, and shifts in word usage. This evolution is evident in the distinction between the classical and modern Arabic eras. Although historians and linguists have partitioned Arabic literature into multiple eras, relatively little research has explored the automatic classification of Arabic texts by time period, particularly beyond the domain of poetry. This paper addresses this gap by employing neural networks and deep learning techniques to automatically classify Arabic texts into distinct eras and periods. The proposed models are evaluated using two datasets derived from two publicly available corpora, covering texts from the pre-Islamic to the modern era. The study examines class setups ranging from binary to 15-class classification and considers both predefined historical eras and custom periodizations. Results range from F1-scores of 0.83 and 0.79 on the binary-era classification task using the OpenITI and APCD datasets, respectively, to 0.20 on the 15-era classification task using OpenITI and 0.18 on the 12-era classification task using APCD.
Background: Coronary angiography (CAG) is a cornerstone imaging modality for assessing coronary artery disease and guiding interventional treatment decisions. However, in real-world clinical settings, angiographic images are often characterized by complex lesion morphology, severe class imbalance, label uncertainty, and limited computational resources, posing substantial challenges to conventional deep learning approaches in terms of robustness and generalization.Methods: The proposed framework is built upon a pretrained convolutional neural network to construct a lightweight hybrid neural representation. A selective neural plasticity training strategy is introduced to enable efficient parameter adaptation. Furthermore, a brain-inspired attention-modulated loss function, combining Focal Loss with label smoothing, is employed to enhance sensitivity to hard samples and uncertain annotations. Class-imbalance-aware sampling and cosine annealing with warm restarts are adopted to mimic rhythmic regulation and attention allocation mechanisms observed in biological neural systems.Results: Experimental results demonstrate that the proposed lightweight brain-inspired model achieves strong and stable performance in binary coronary angiography classification, yielding competitive accuracy, recall, F1-score, and AUC metrics while maintaining high computational efficiency.Conclusion: This study validates the effectiveness of brain-inspired learning mechanisms in lightweight medical image analysis and provides a biologically plausible and deployable solution for intelligent clinical decision support under limited computational resources.
We study the problem of sampling from a target distribution $π(q)\propto e^{-U(q)}$ on $\mathbb{R}^d$, where $U$ can be non-convex, via the Hessian-free high-resolution (HFHR) dynamics, which is a second-order Langevin-type process that has $e^{-U(q)-\frac12|p|^2}$ as its unique invariant distribution, and it reduces to kinetic Langevin dynamics (KLD) as the resolution parameter $α\to0$. The existing theory for HFHR dynamics in the literature is restricted to strongly-convex $U$, although numerical experiments are promising for non-convex settings as well. We focus on studying the convergence of HFHR dynamics when $U$ can be non-convex, which bridges a gap between theory and practice. Under a standard assumption of dissipativity and smoothness on $U$, we adopt the reflection/synchronous coupling method. This yields a Lyapunov-weighted Wasserstein distance in which the HFHR semigroup is exponentially contractive for all sufficiently small $α>0$ whenever KLD is. We further show that, under an additional assumption that asymptotically $\nabla U$ has linear growth at infinity, the contraction rate for HFHR dynamics is strictly better than that of KLD, with an explicit gain. As a case study, we verify the assumptions and the resulting acceleration for three examples: a multi-well potential, Bayesian linear regression with $L^p$ regularizer and Bayesian binary classification. We conduct numerical experiments based on these examples, as well as an additional example of Bayesian logistic regression with real data processed by the neural networks, which illustrates the efficiency of the algorithms based on HFHR dynamics and verifies the acceleration and superior performance compared to KLD.
This paper presents a comparative study of a custom convolutional neural network (CNN) architecture against widely used pretrained and transfer learning CNN models across five real-world image datasets. The datasets span binary classification, fine-grained multiclass recognition, and object detection scenarios. We analyze how architectural factors, such as network depth, residual connections, and feature extraction strategies, influence classification and localization performance. The results show that deeper CNN architectures provide substantial performance gains on fine-grained multiclass datasets, while lightweight pretrained and transfer learning models remain highly effective for simpler binary classification tasks. Additionally, we extend the proposed architecture to an object detection setting, demonstrating its adaptability in identifying unauthorized auto-rickshaws in real-world traffic scenes. Building upon a systematic analysis of custom CNN architectures alongside pretrained and transfer learning models, this study provides practical guidance for selecting suitable network designs based on task complexity and resource constraints.