Abstract:In this study, we propose a new binary modulation on conjugate-reciprocal zeros (BMOCZ) zero constellation, which we call smooshed binary modulation on conjugate-reciprocal zeros (SBMOCZ), to address carrier frequency offset (CFO)-induced zero rotation without depending on channel coding. In our approach, we modify the phase mapping of Huffman BMOCZ by shrinking the angle between adjacent zeros, except for the first and last, to introduce a gap in the zero constellation. By discerning the gap location in the received polynomial, the receiver can estimate and correct the phase rotation. We demonstrate the error rate performance of SBMOCZ relative to Huffman BMOCZ, showing that SBMOCZ addresses a CFO-induced rotation at the cost of a modest performance reduction compared to Huffman BMOCZ in the absence of a CFO. Finally, we compare SBMOCZ to Huffman BMOCZ using a cyclically permutable code (CPC), showing a 4 dB bit error rate (BER) improvement in a fading channel, while demonstrating comparable performance across other simulations.
Abstract:In this work, we propose jutted binary modulation on conjugate-reciprocal zeros (J-BMOCZ) for non-coherent communication under a carrier frequency offset (CFO). By introducing asymmetry to the Huffman BMOCZ zero constellation, we exploit the identical aperiodic auto-correlation function of BMOCZ to derive a Fourier-domain metric for CFO estimation. Unlike the existing methods for Huffman BMOCZ, which require a cyclically permutable code (CPC) for pilot-free CFO correction, J-BMOCZ enables the estimation of a CFO without the use of pilots or channel coding. Through numerical simulations in additive white Gaussian noise and fading channels, we show that the bit error rate (BER) loss of J-BMOCZ under a CFO is just 1 dB over Huffman BMOCZ without a CFO. Furthermore, the results show that coded J-BMOCZ achieves better BER performance than Huffman BMOCZ with a CPC.
Abstract:In this work, we investigate the radius maximizing reliability for binary modulation on conjugate-reciprocal zeros (BMOCZ) implemented with both maximum likelihood (ML) and direct zero-testing (DiZeT) decoders. We first show that the optimal radius for BMOCZ is a function of the employed decoder and that the radius maximizing the minimum distance between polynomial zeros does not maximize the minimum distance of the final code. While maximizing zero separation offers an almost optimal solution with the DiZeT decoder, simulations show that the ML decoder outperforms the DiZeT decoder in both additive white Gaussian noise (AWGN) and fading channels when the radius is chosen to maximize codeword separation. Finally, we analyze different sequence-to-subcarrier mappings for BMOCZ-based orthogonal frequency division multiplexing (OFDM). We highlight a flexible time-frequency OFDM waveform that avoids distortion introduced by a frequency-selective channel at the expense of a higher peak-to-average power ratio (PAPR).