Abstract:Diabetic retinopathy (DR) is a leading cause of vision loss worldwide, and early diagnosis through automated retinal image analysis can significantly reduce the risk of blindness. This paper presents a robust deep learning framework for both binary and five-class DR classification, leveraging transfer learning and extensive data augmentation to address the challenges of class imbalance and limited training data. We evaluate a range of pretrained convolutional neural network architectures, including variants of ResNet and EfficientNet, on the APTOS 2019 dataset. For binary classification, our proposed model achieves a state-of-the-art accuracy of 98.9%, with a precision of 98.6%, recall of 99.3%, F1-score of 98.9%, and an AUC of 99.4%. In the more challenging five-class severity classification task, our model obtains a competitive accuracy of 84.6% and an AUC of 94.1%, outperforming several existing approaches. Our findings also demonstrate that EfficientNet-B0 and ResNet34 offer optimal trade-offs between accuracy and computational efficiency across both tasks. These results underscore the effectiveness of combining class-balanced augmentation with transfer learning for high-performance DR diagnosis. The proposed framework provides a scalable and accurate solution for DR screening, with potential for deployment in real-world clinical environments.
Abstract:An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat. There are various types of arrhythmias that can originate from different areas of the heart, resulting in either a rapid, slow, or irregular heartbeat. An electrocardiogram (ECG) is a vital diagnostic tool used to detect heart irregularities and abnormalities, allowing experts to analyze the heart's electrical signals to identify intricate patterns and deviations from the norm. Over the past few decades, numerous studies have been conducted to develop automated methods for classifying heartbeats based on ECG data. In recent years, deep learning has demonstrated exceptional capabilities in tackling various medical challenges, particularly with transformers as a model architecture for sequence processing. By leveraging the transformers, we developed the ECGformer model for the classification of various arrhythmias present in electrocardiogram data. We assessed the suggested approach using the MIT-BIH and PTB datasets. ECG heartbeat arrhythmia classification results show that the proposed method is highly effective.