Sparse attention mechanisms aim to reduce computational overhead by selectively processing a subset of salient tokens while preserving model performance. Despite the effectiveness of such designs, how to actively encourage token sparsity of well-posed MLLMs remains under-explored, which fundamentally limits the achievable acceleration effect during inference. In this paper, we propose a simple RL-based post-training method named \textbf{ZipR1} that treats the token reduction ratio as the efficiency reward and answer accuracy as the performance reward. In this way, our method can jointly alleviate the computation and memory bottlenecks via directly optimizing the inference-consistent efficiency-performance tradeoff. Experimental results demonstrate that ZipR1 can reduce the token ratio of Qwen2/2.5-VL from 80\% to 25\% with a minimal accuracy reduction on 13 image and video benchmarks.