Incorporating symmetry priors as inductive biases to design equivariant Vision Transformers (ViTs) has emerged as a promising avenue for enhancing their performance. However, existing equivariant ViTs often struggle to balance performance with equivariance, primarily due to the challenge of achieving holistic equivariant modifications across the diverse modules in ViTs-particularly in harmonizing the Self-Attention mechanism with Patch Embedding. To address this, we propose a straightforward framework that systematically renders key ViT components, including patch embedding, self-attention, positional encodings, and Down/Up-Sampling, equivariant, thereby constructing ViTs with guaranteed equivariance. The resulting architecture serves as a plug-and-play replacement that is both theoretically grounded and practically versatile, scaling seamlessly even to Swin Transformers. Extensive experiments demonstrate that our equivariant ViTs consistently improve performance and data efficiency across a wide spectrum of vision tasks.