Deep learning has achieved strong performance in Time Series Forecasting (TSF). However, we identify a critical representation paradox, termed Latent Chaos: models with accurate predictions often learn latent representations that are temporally disordered and lack continuity. We attribute this phenomenon to the dominant observation-space forecasting paradigm. Most TSF models minimize point-wise errors on noisy and partially observed data, which encourages shortcut solutions instead of the recovery of underlying system dynamics. To address this issue, we propose Latent Time Series Forecasting (LatentTSF), a novel paradigm that shifts TSF from observation regression to latent state prediction. Specifically, LatentTSF employs an AutoEncoder to project observations at each time step into a higher-dimensional latent state space. This expanded representation aims to capture underlying system variables and impose a smoother temporal structure. Forecasting is then performed entirely in the latent space, allowing the model to focus on learning structured temporal dynamics. Theoretical analysis demonstrates that our proposed latent objectives implicitly maximize mutual information between predicted latent states and ground-truth states and observations. Extensive experiments on widely-used benchmarks confirm that LatentTSF effectively mitigates latent chaos, achieving superior performance. Our code is available in https://github.com/Muyiiiii/LatentTSF.