Abstract:In the 6G era, the demand for higher system throughput and the implementation of emerging 6G technologies require large-scale antenna arrays and accurate spatial channel state information (Spatial-CSI). Traditional channel modeling approaches, such as empirical models, ray tracing, and measurement-based methods, face challenges in spatial resolution, efficiency, and scalability. Radiance field-based methods have emerged as promising alternatives but still suffer from geometric inaccuracy and costly supervision. This paper proposes RF-PGS, a novel framework that reconstructs high-fidelity radio propagation paths from only sparse path loss spectra. By introducing Planar Gaussians as geometry primitives with certain RF-specific optimizations, RF-PGS achieves dense, surface-aligned scene reconstruction in the first geometry training stage. In the subsequent Radio Frequency (RF) training stage, the proposed fully-structured radio radiance, combined with a tailored multi-view loss, accurately models radio propagation behavior. Compared to prior radiance field methods, RF-PGS significantly improves reconstruction accuracy, reduces training costs, and enables efficient representation of wireless channels, offering a practical solution for scalable 6G Spatial-CSI modeling.
Abstract:Detection-based tracking is one of the main methods of multi-object tracking. It can obtain good tracking results when using excellent detectors but it may associate wrong targets when facing overlapping and low-confidence detections. To address this issue, this paper proposes a multi-object tracker based on shape constraint and confidence named SCTracker. In the data association stage, an Intersection of Union distance with shape constraints is applied to calculate the cost matrix between tracks and detections, which can effectively avoid the track tracking to the wrong target with the similar position but inconsistent shape, so as to improve the accuracy of data association. Additionally, the Kalman Filter based on the detection confidence is used to update the motion state to improve the tracking performance when the detection has low confidence. Experimental results on MOT 17 dataset show that the proposed method can effectively improve the tracking performance of multi-object tracking.