Abstract:Although large vision-language models (LVLMs) leverage rich visual token representations to achieve strong performance on multimodal tasks, these tokens also introduce significant computational overhead during inference. Existing training-free token pruning methods typically adopt a single-stage strategy, focusing either on visual self-attention or visual-textual cross-attention. However, such localized perspectives often overlook the broader information flow across the model, leading to substantial performance degradation, especially under high pruning ratios. In this work, we propose STAR (Stage-wise Attention-guided token Reduction), a training-free, plug-and-play framework that approaches token pruning from a global perspective. Instead of pruning at a single point, STAR performs attention-guided reduction in two complementary stages: an early-stage pruning based on visual self-attention to remove redundant low-level features, and a later-stage pruning guided by cross-modal attention to discard task-irrelevant tokens. This holistic approach allows STAR to significantly reduce computational cost while better preserving task-critical information. Extensive experiments across multiple LVLM architectures and benchmarks show that STAR achieves strong acceleration while maintaining comparable, and in some cases even improved performance.
Abstract:The waist plays a crucial role in the agile movement of many animals in nature. It provides the torso with additional degrees of freedom and flexibility, inspiring researchers to incorporate this biological feature into robotic structures to enhance robot locomotion. This paper presents a cost-effective and low-complexity waist mechanism integrated into the structure of the open-source robot solo8, adding a new degree of freedom (DOF) to its torso. We refer to this novel robot as solo9. Additionally, we propose a full-body control method for the waist-equipped quadruped robot based on generative adversarial imitation learning (GAIL). During training, the discriminator is used as input for iterative optimization of the policy and dataset, enabling solo9 to achieve flexible steering maneuvers across various gaits. Extensive tests of solo9's steering capabilities, terrain adaptability, and robustness are conducted in both simulation and real-world scenarios, with detailed comparisons to solo8 and solo12, demonstrating the effectiveness of the control algorithm and the advantages of the waist mechanism.