Abstract:Inferring the 3D structure from a single image, particularly in occluded regions, remains a fundamental yet unsolved challenge in vision-centric autonomous driving. Existing unsupervised approaches typically train a neural radiance field and treat the network outputs as occupancy probabilities during evaluation, overlooking the inconsistency between training and evaluation protocols. Moreover, the prevalent use of 2D ground truth fails to reveal the inherent ambiguity in occluded regions caused by insufficient geometric constraints. To address these issues, this paper presents a reformulated benchmark for unsupervised monocular 3D occupancy prediction. We first interpret the variables involved in the volume rendering process and identify the most physically consistent representation of the occupancy probability. Building on these analyses, we improve existing evaluation protocols by aligning the newly identified representation with voxel-wise 3D occupancy ground truth, thereby enabling unsupervised methods to be evaluated in a manner consistent with that of supervised approaches. Additionally, to impose explicit constraints in occluded regions, we introduce an occlusion-aware polarization mechanism that incorporates multi-view visual cues to enhance discrimination between occupied and free spaces in these regions. Extensive experiments demonstrate that our approach not only significantly outperforms existing unsupervised approaches but also matches the performance of supervised ones. Our source code and evaluation protocol will be made available upon publication.
Abstract:Unsupervised monocular depth estimation frameworks have shown promising performance in autonomous driving. However, existing solutions primarily rely on a simple convolutional neural network for ego-motion recovery, which struggles to estimate precise camera poses in dynamic, complicated real-world scenarios. These inaccurately estimated camera poses can inevitably deteriorate the photometric reconstruction and mislead the depth estimation networks with wrong supervisory signals. In this article, we introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning. Specifically, a confidence-aware feature flow estimator is proposed to acquire 2D feature positional translations and their associated confidence levels. Meanwhile, we introduce a positional clue aggregator, which integrates pseudo 3D point clouds from DepthNet and 2D feature flows into homogeneous positional representations. Finally, a hierarchical positional embedding injector is proposed to selectively inject spatial clues into semantic features for robust camera pose decoding. Extensive experiments and analyses demonstrate the superior performance of our model compared to other state-of-the-art methods. Remarkably, SCIPaD achieves a reduction of 22.2\% in average translation error and 34.8\% in average angular error for camera pose estimation task on the KITTI Odometry dataset. Our source code is available at \url{https://mias.group/SCIPaD}.