Abstract:Achieving immersive auditory experiences in virtual environments requires flexible sound modeling that supports dynamic source positions. In this paper, we introduce a task called resounding, which aims to estimate room impulse responses at arbitrary emitter location from a sparse set of measured emitter positions, analogous to the relighting problem in vision. We leverage the reciprocity property and introduce Versa, a physics-inspired approach to facilitating acoustic field learning. Our method creates physically valid samples with dense virtual emitter positions by exchanging emitter and listener poses. We also identify challenges in deploying reciprocity due to emitter/listener gain patterns and propose a self-supervised learning approach to address them. Results show that Versa substantially improve the performance of acoustic field learning on both simulated and real-world datasets across different metrics. Perceptual user studies show that Versa can greatly improve the immersive spatial sound experience. Code, dataset and demo videos are available on the project website: https://waves.seas.upenn.edu/projects/versa.




Abstract:Realistic audio synthesis that captures accurate acoustic phenomena is essential for creating immersive experiences in virtual and augmented reality. Synthesizing the sound received at any position relies on the estimation of impulse response (IR), which characterizes how sound propagates in one scene along different paths before arriving at the listener's position. In this paper, we present Acoustic Volume Rendering (AVR), a novel approach that adapts volume rendering techniques to model acoustic impulse responses. While volume rendering has been successful in modeling radiance fields for images and neural scene representations, IRs present unique challenges as time-series signals. To address these challenges, we introduce frequency-domain volume rendering and use spherical integration to fit the IR measurements. Our method constructs an impulse response field that inherently encodes wave propagation principles and achieves state-of-the-art performance in synthesizing impulse responses for novel poses. Experiments show that AVR surpasses current leading methods by a substantial margin. Additionally, we develop an acoustic simulation platform, AcoustiX, which provides more accurate and realistic IR simulations than existing simulators. Code for AVR and AcoustiX are available at https://zitonglan.github.io/avr.