Abstract:Generating high-quality, textured 3D scenes from a single image remains a fundamental challenge in vision and graphics. Recent image-to-3D generators recover reasonable geometry from single views, but their object-centric training limits generalization to complex, large-scale scenes with faithful structure and texture. We present EvoScene, a self-evolving, training-free framework that progressively reconstructs complete 3D scenes from single images. The key idea is combining the complementary strengths of existing models: geometric reasoning from 3D generation models and visual knowledge from video generation models. Through three iterative stages--Spatial Prior Initialization, Visual-guided 3D Scene Mesh Generation, and Spatial-guided Novel View Generation--EvoScene alternates between 2D and 3D domains, gradually improving both structure and appearance. Experiments on diverse scenes demonstrate that EvoScene achieves superior geometric stability, view-consistent textures, and unseen-region completion compared to strong baselines, producing ready-to-use 3D meshes for practical applications.
Abstract:With the development of cloud computing, the number of Web APIs has increased dramatically, further intensifying the demand for efficient Web API recommendation. Despite the demonstrated success of previous Web API recommendation solutions, two critical challenges persist: 1) a fixed top-N recommendation that cannot accommodate the varying API cardinality requirements of different mashups, and 2) these methods output only ranked API lists without accompanying reasons, depriving users of understanding the recommendation. To address these challenges, we propose WAR-Re, an LLM-based model for Web API recommendation with semantic reasoning for justification. WAR-Re leverages special start and stop tokens to handle the first challenge and uses two-stage training: supervised fine-tuning and reinforcement learning via Group Relative Policy Optimization (GRPO) to enhance the model's ability in both tasks. Comprehensive experimental evaluations on the ProgrammableWeb dataset demonstrate that WAR-Re achieves a gain of up to 21.59\% over the state-of-the-art baseline model in recommendation accuracy, while consistently producing high-quality semantic reasons for recommendations.