Abstract:Vision-centric retrieval for VQA requires retrieving images to supply missing visual cues and integrating them into the reasoning process. However, selecting the right images and integrating them effectively into the model's reasoning remains challenging.To address this challenge, we propose R3G, a modular Reasoning-Retrieval-Reranking framework.It first produces a brief reasoning plan that specifies the required visual cues, then adopts a two-stage strategy, with coarse retrieval followed by fine-grained reranking, to select evidence images.On MRAG-Bench, R3G improves accuracy across six MLLM backbones and nine sub-scenarios, achieving state-of-the-art overall performance. Ablations show that sufficiency-aware reranking and reasoning steps are complementary, helping the model both choose the right images and use them well. We release code and data at https://github.com/czh24/R3G.
Abstract:Gait recognition is emerging as a promising technology and an innovative field within computer vision. However, existing methods typically rely on complex architectures to directly extract features from images and apply pooling operations to obtain sequence-level representations. Such designs often lead to overfitting on static noise (e.g., clothing), while failing to effectively capture dynamic motion regions.To address the above challenges, we present a Language guided and Motion-aware gait recognition framework, named LMGait.In particular, we utilize designed gait-related language cues to capture key motion features in gait sequences.