Abstract:Small and Medium-sized Enterprises (SMEs) are vital to the modern economy, yet their credit risk analysis often struggles with scarce data, especially for online lenders lacking direct credit records. This paper introduces a Graph Neural Network (GNN)-based framework, leveraging SME interactions from transaction and social data to map spatial dependencies and predict loan default risks. Tests on real-world datasets from Discover and Ant Credit (23.4M nodes for supply chain analysis, 8.6M for default prediction) show the GNN surpasses traditional and other GNN baselines, with AUCs of 0.995 and 0.701 for supply chain mining and default prediction, respectively. It also helps regulators model supply chain disruption impacts on banks, accurately forecasting loan defaults from material shortages, and offers Federal Reserve stress testers key data for CCAR risk buffers. This approach provides a scalable, effective tool for assessing SME credit risk.
Abstract:This paper leverages machine learning algorithms to forecast and analyze financial time series. The process begins with a denoising autoencoder to filter out random noise fluctuations from the main contract price data. Then, one-dimensional convolution reduces the dimensionality of the filtered data and extracts key information. The filtered and dimensionality-reduced price data is fed into a GANs network, and its output serve as input of a fully connected network. Through cross-validation, a model is trained to capture features that precede large price fluctuations. The model predicts the likelihood and direction of significant price changes in real-time price sequences, placing trades at moments of high prediction accuracy. Empirical results demonstrate that using autoencoders and convolution to filter and denoise financial data, combined with GANs, achieves a certain level of predictive performance, validating the capabilities of machine learning algorithms to discover underlying patterns in financial sequences. Keywords - CNN;GANs; Cryptocurrency; Prediction.
Abstract:High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.