Abstract:Image classification benchmark datasets such as CIFAR, MNIST, and ImageNet serve as critical tools for model evaluation. However, despite the cleaning efforts, these datasets still suffer from pervasive noisy labels and often contain missing labels due to the co-existing image pattern where multiple classes appear in an image sample. This results in misleading model comparisons and unfair evaluations. Existing label cleaning methods focus primarily on noisy labels, but the issue of missing labels remains largely overlooked. Motivated by these challenges, we present a comprehensive framework named REVEAL, integrating state-of-the-art pre-trained vision-language models (e.g., LLaVA, BLIP, Janus, Qwen) with advanced machine/human label curation methods (e.g., Docta, Cleanlab, MTurk), to systematically address both noisy labels and missing label detection in widely-used image classification test sets. REVEAL detects potential noisy labels and omissions, aggregates predictions from various methods, and refines label accuracy through confidence-informed predictions and consensus-based filtering. Additionally, we provide a thorough analysis of state-of-the-art vision-language models and pre-trained image classifiers, highlighting their strengths and limitations within the context of dataset renovation by revealing 10 observations. Our method effectively reveals missing labels from public datasets and provides soft-labeled results with likelihoods. Through human verifications, REVEAL significantly improves the quality of 6 benchmark test sets, highly aligning to human judgments and enabling more accurate and meaningful comparisons in image classification.
Abstract:Large Language Models (LLMs) have demonstrated strong capabilities in memorizing vast amounts of knowledge across diverse domains. However, the ability to selectively forget specific knowledge is critical for ensuring the safety and compliance of deployed models. Existing unlearning efforts typically fine-tune the model with resources such as forget data, retain data, and a calibration model. These additional gradient steps blur the decision boundary between forget and retain knowledge, making unlearning often at the expense of overall performance. To avoid the negative impact of fine-tuning, it would be better to unlearn solely at inference time by safely guarding the model against generating responses related to the forget target, without destroying the fluency of text generation. In this work, we propose Generation-time Unlearning via Adaptive Restriction and Detection (GUARD), a framework that enables dynamic unlearning during LLM generation. Specifically, we first employ a prompt classifier to detect unlearning targets and extract the corresponding forbidden token. We then dynamically penalize and filter candidate tokens during generation using a combination of token matching and semantic matching, effectively preventing the model from leaking the forgotten content. Experimental results on copyright content unlearning tasks over the Harry Potter dataset and the MUSE benchmark, as well as entity unlearning tasks on the TOFU dataset, demonstrate that GUARD achieves strong forget quality across various tasks while causing almost no degradation to the LLM's general capabilities, striking an excellent trade-off between forgetting and utility.