Abstract:LLM-based multi-agent simulations are increasingly adopted across application domains, but remain difficult to scale due to GPU memory pressure. Each agent maintains private GPU-resident states, including models, prefix caches, and adapters, which quickly exhaust device memory as the agent count grows. We identify two key properties of these workloads: sparse agent activation and an estimable agent invocation order. Based on an analysis of representative workload classes, we introduce invocation distance, a unified abstraction that estimates the relative order in which agents will issue future LLM requests. Leveraging this abstraction, we present ScaleSim, a memory-efficient LLM serving system for large-scale multi-agent simulations. ScaleSim enables proactive prefetching and priority-based eviction, supports diverse agent-specific memory through a modular interface, and achieves up to 1.74x speedup over SGLang on simulation benchmarks.
Abstract:While Large Language Models (LLMs) show significant potential in hardware engineering, current benchmarks suffer from saturation and limited task diversity, failing to reflect LLMs' performance in real industrial workflows. To address this gap, we propose a comprehensive benchmark for AI-aided chip design that rigorously evaluates LLMs across three critical tasks: Verilog generation, debugging, and reference model generation. Our benchmark features 44 realistic modules with complex hierarchical structures, 89 systematic debugging cases, and 132 reference model samples across Python, SystemC, and CXXRTL. Evaluation results reveal substantial performance gaps, with state-of-the-art Claude-4.5-opus achieving only 30.74\% on Verilog generation and 13.33\% on Python reference model generation, demonstrating significant challenges compared to existing saturated benchmarks where SOTA models achieve over 95\% pass rates. Additionally, to help enhance LLM reference model generation, we provide an automated toolbox for high-quality training data generation, facilitating future research in this underexplored domain. Our code is available at https://github.com/zhongkaiyu/ChipBench.git.