Abstract:Confidence calibration is essential for making large language models (LLMs) reliable, yet existing training-free methods have been primarily studied under single-answer question answering. In this paper, we show that these methods break down in the presence of multiple valid answers, where disagreement among equally correct responses leads to systematic underestimation of confidence. To enable a systematic study of this phenomenon, we introduce MACE, a benchmark of 12,000 factual questions spanning six domains with varying numbers of correct answers. Experiments across 15 representative calibration methods and four LLM families (7B-72B) reveal that while accuracy increases with answer cardinality, estimated confidence consistently decreases, causing severe miscalibration for questions with mixed answer counts. To address this issue, we propose Semantic Confidence Aggregation (SCA), which aggregates confidence over multiple high-probability sampled responses. SCA achieves state-of-the-art calibration performance under mixed-answer settings while preserving strong calibration on single-answer questions.
Abstract:Large vision-language models (LVLMs) demonstrate strong visual question answering (VQA) capabilities but are shown to hallucinate. A reliable model should perceive its knowledge boundaries-knowing what it knows and what it does not. This paper investigates LVLMs' perception of their knowledge boundaries by evaluating three types of confidence signals: probabilistic confidence, answer consistency-based confidence, and verbalized confidence. Experiments on three LVLMs across three VQA datasets show that, although LVLMs possess a reasonable perception level, there is substantial room for improvement. Among the three confidences, probabilistic and consistency-based signals are more reliable indicators, while verbalized confidence often leads to overconfidence. To enhance LVLMs' perception, we adapt several established confidence calibration methods from Large Language Models (LLMs) and propose three effective methods. Additionally, we compare LVLMs with their LLM counterparts, finding that jointly processing visual and textual inputs decreases question-answering performance but reduces confidence, resulting in an improved perception level compared to LLMs.