Abstract:Recent advancements in Generalizable Gaussian Splatting have enabled robust 3D reconstruction from sparse input views by utilizing feed-forward Gaussian Splatting models, achieving superior cross-scene generalization. However, while many methods focus on geometric consistency, they often neglect the potential of text-driven guidance to enhance semantic understanding, which is crucial for accurately reconstructing fine-grained details in complex scenes. To address this limitation, we propose TextSplat--the first text-driven Generalizable Gaussian Splatting framework. By employing a text-guided fusion of diverse semantic cues, our framework learns robust cross-modal feature representations that improve the alignment of geometric and semantic information, producing high-fidelity 3D reconstructions. Specifically, our framework employs three parallel modules to obtain complementary representations: the Diffusion Prior Depth Estimator for accurate depth information, the Semantic Aware Segmentation Network for detailed semantic information, and the Multi-View Interaction Network for refined cross-view features. Then, in the Text-Guided Semantic Fusion Module, these representations are integrated via the text-guided and attention-based feature aggregation mechanism, resulting in enhanced 3D Gaussian parameters enriched with detailed semantic cues. Experimental results on various benchmark datasets demonstrate improved performance compared to existing methods across multiple evaluation metrics, validating the effectiveness of our framework. The code will be publicly available.
Abstract:Oracle Bone Inscription (OBI) is the earliest mature writing system known in China to date, which represents a crucial stage in the development of hieroglyphs. Nevertheless, the substantial quantity of undeciphered OBI characters continues to pose a persistent challenge for scholars, while conventional methods of ancient script research are both time-consuming and labor-intensive. In this paper, we propose a cross-font image retrieval network (CFIRN) to decipher OBI characters by establishing associations between OBI characters and other script forms, simulating the interpretive behavior of paleography scholars. Concretely, our network employs a siamese framework to extract deep features from character images of various fonts, fully exploring structure clues with different resolution by designed multiscale feature integration (MFI) module and multiscale refinement classifier (MRC). Extensive experiments on three challenging cross-font image retrieval datasets demonstrate that, given undeciphered OBI characters, our CFIRN can effectively achieve accurate matches with characters from other gallery fonts.