Abstract:Industrial recommender systems commonly rely on ensemble sorting (ES) to combine predictions from multiple behavioral objectives. Traditionally, this process depends on manually designed nonlinear transformations (e.g., polynomial or exponential functions) and hand-tuned fusion weights to balance competing goals -- an approach that is labor-intensive and frequently suboptimal in achieving Pareto efficiency. In this paper, we propose a novel Unified Monotonic Ranking Ensemble (UMRE) framework to address the limitations of traditional methods in ensemble sorting. UMRE replaces handcrafted transformations with Unconstrained Monotonic Neural Networks (UMNN), which learn expressive, strictly monotonic functions through the integration of positive neural integrals. Subsequently, a lightweight ranking model is employed to fuse the prediction scores, assigning personalized weights to each prediction objective. To balance competing goals, we further introduce a Pareto optimality strategy that adaptively coordinates task weights during training. UMRE eliminates manual tuning, maintains ranking consistency, and achieves fine-grained personalization. Experimental results on two public recommendation datasets (Kuairand and Tenrec) and online A/B tests demonstrate impressive performance and generalization capabilities.
Abstract:In this paper, we propose a novel Denoising Model for Representation Learning and take Person Re-Identification (ReID) as a benchmark task, named DenoiseReID, to improve feature discriminative with joint feature extraction and denoising. In the deep learning epoch, backbones which consists of cascaded embedding layers (e.g. convolutions or transformers) to progressively extract useful features, becomes popular. We first view each embedding layer in a backbone as a denoising layer, processing the cascaded embedding layers as if we are recursively denoise features step-by-step. This unifies the frameworks of feature extraction and feature denoising, where the former progressively embeds features from low-level to high-level, and the latter recursively denoises features step-by-step. Then we design a novel Feature Extraction and Feature Denoising Fusion Algorithm (FEFDFA) and \textit{theoretically demonstrate} its equivalence before and after fusion. FEFDFA merges parameters of the denoising layers into existing embedding layers, thus making feature denoising computation-free. This is a label-free algorithm to incrementally improve feature also complementary to the label if available. Besides, it enjoys two advantages: 1) it's a computation-free and label-free plugin for incrementally improving ReID features. 2) it is complementary to the label if the label is available. Experimental results on various tasks (large-scale image classification, fine-grained image classification, image retrieval) and backbones (transformers and convolutions) show the scalability and stability of our method. Experimental results on 4 ReID datasets and various of backbones show the stability and impressive improvements. We also extend the proposed method to large-scale (ImageNet) and fine-grained (e.g. CUB200) classification tasks, similar improvements are proven.