Abstract:Advancing complex reasoning in large language models relies on high-quality, verifiable datasets, yet human annotation remains cost-prohibitive and difficult to scale. Current synthesis paradigms often face a recurring trade-off: maintaining structural validity typically restricts problem complexity, while relaxing constraints to increase difficulty frequently leads to inconsistent or unsolvable instances. To address this, we propose Agentic Proposing, a framework that models problem synthesis as a goal-driven sequential decision process where a specialized agent dynamically selects and composes modular reasoning skills. Through an iterative workflow of internal reflection and tool-use, we develop the Agentic-Proposer-4B using Multi-Granularity Policy Optimization (MGPO) to generate high-precision, verifiable training trajectories across mathematics, coding, and science. Empirical results demonstrate that downstream solvers trained on agent-synthesized data significantly outperform leading baselines and exhibit robust cross-domain generalization. Notably, a 30B solver trained on only 11,000 synthesized trajectories achieves a state-of-the-art 91.6% accuracy on AIME25, rivaling frontier-scale proprietary models such as GPT-5 and proving that a small volume of high-quality synthetic signals can effectively substitute for massive human-curated datasets.
Abstract:Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
Abstract:Large language models (LLMs) struggle with complex, long-horizon reasoning due to instability caused by their frozen policy assumption. Current test-time scaling methods treat execution feedback merely as an external signal for filtering or rewriting trajectories, without internalizing it to improve the underlying reasoning strategy. Inspired by Popper's epistemology of "conjectures and refutations," we argue that intelligence requires real-time evolution of the model's policy through learning from failed attempts. We introduce Policy of Thoughts (PoT), a framework that recasts reasoning as a within-instance online optimization process. PoT first generates diverse candidate solutions via an efficient exploration mechanism, then uses Group Relative Policy Optimization (GRPO) to update a transient LoRA adapter based on execution feedback. This closed-loop design enables dynamic, instance-specific refinement of the model's reasoning priors. Experiments show that PoT dramatically boosts performance: a 4B model achieves 49.71% accuracy on LiveCodeBench, outperforming GPT-4o and DeepSeek-V3 despite being over 50 smaller.