Abstract:Electroencephalography (EEG) denoising methods typically depend on manual intervention or clean reference signals. This work introduces a task-oriented learning framework for automatic EEG denoising that uses only task labels without clean reference signals. EEG recordings are first decomposed into components based on blind source separation (BSS) techniques. Then, a learning-based selector assigns a retention probability to each component, and the denoised signal is reconstructed as a probability-weighted combination. A downstream proxy-task model evaluates the reconstructed signal, with its task loss supervising the selector in a collaborative optimization scheme that relies solely on task labels, eliminating the need for clean EEG references. Experiments on three datasets spanning two paradigms and multiple noise conditions show consistent gains in both task performance (accuracy: $2.56\%\uparrow$) and standard signal-quality metrics (signal-to-noise-ratio: $0.82$\,dB\,$\uparrow$). Further analyses demonstrate that the task-oriented learning framework is algorithm-agnostic, as it accommodates diverse decomposition techniques and network backbones for both the selector and the proxy model. These promising results indicate that the proposed task-oriented learning framework is a practical EEG denoising solution with potential implications for neuroscience research and EEG-based interaction systems.
Abstract:Low Earth Orbit (LEO) satellites are emerging as key components of 6G networks, with many already deployed to support large-scale Earth observation and sensing related tasks. Federated Learning (FL) presents a promising paradigm for enabling distributed intelligence in these resource-constrained and dynamic environments. However, achieving reliable convergence, while minimizing both processing time and energy consumption, remains a substantial challenge, particularly in heterogeneous and partially unlabeled satellite networks. To address this challenge, we propose a novel semi-supervised federated learning framework tailored for LEO satellite networks with hierarchical clustering aggregation. To further reduce communication overhead, we integrate sparsification and adaptive weight quantization techniques. In addition, we divide the FL clustering into two stages: satellite cluster aggregation stage and Ground Stations (GSs) aggregation stage. The supervised learning at GSs guides selected Parameter Server (PS) satellites, which in turn support fully unlabeled satellites during the federated training process. Extensive experiments conducted on a satellite network testbed demonstrate that our proposal can significantly reduce processing time (up to 3x) and energy consumption (up to 4x) compared to other comparative methods while maintaining model accuracy.
Abstract:The emergence of vision-language-action (VLA) models has given rise to foundation models for robot manipulation. Although these models have achieved significant improvements, their generalization in multi-task manipulation remains limited. This study proposes a VLA model-expert collaboration framework that leverages a limited number of expert actions to enhance VLA model performance. This approach reduces expert workload relative to manual operation while simultaneously improving the reliability and generalization of VLA models. Furthermore, manipulation data collected during collaboration can further refine the VLA model, while human participants concurrently enhance their skills. This bi-directional learning loop boosts the overall performance of the collaboration system. Experimental results across various VLA models demonstrate the effectiveness of the proposed system in collaborative manipulation and learning, as evidenced by improved success rates across tasks. Additionally, validation using a brain-computer interface (BCI) indicates that the collaboration system enhances the efficiency of low-speed action systems by involving VLA model during manipulation. These promising results pave the way for advancing human-robot interaction in the era of foundation models for robotics. (Project website: https://aoqunjin.github.io/Expert-VLA/)