Abstract:We conceive a novel channel estimation and data detection scheme for OTFS-modulated faster-than-Nyquist (FTN) transmission over doubly selective fading channels, aiming for enhancing the spectral efficiency and Doppler resilience. The delay-Doppler (DD) domain's input-output relationship of OTFS-FTN signaling is derived by employing a root-raised cosine (RRC) shaping filter. More specifically, we design our DD-domain channel estimator for FTN-based pilot transmission, where the pilot symbol interval is lower than that defined by the classic Nyquist criterion. Moreover, we propose a reduced-complexity linear minimum mean square error equalizer, supporting noise whitening, where the FTN-induced inter-symbol interference (ISI) matrix is approximated by a sparse one. Our performance results demonstrate that the proposed OTFS-FTN scheme is capable of enhancing the achievable information rate, while attaining a comparable BER performance to both that of its Nyquist-based OTFS counterpart and to other FTN transmission schemes, which employ the same RRC shaping filter.



Abstract:A precoded orthogonal time frequency space (OTFS) modulation scheme relying on faster-than-Nyquist (FTN) transmission over doubly selective fading channels is {proposed}, which enhances the spectral efficiency and improves the Doppler resilience. We derive the input-output relationship of the FTN signaling in the delay-Doppler domain. Eigenvalue decomposition (EVD) is used for eliminating both the effects of inter-symbol interference and correlated additive noise encountered in the delay-Doppler domain to enable efficient symbol-by-symbol demodulation. Furthermore, the power allocation coefficients of individual frames are optimized for maximizing the mutual information under the constraint of the derived total transmit power. Our performance results demonstrate that the proposed FTN-based OTFS scheme can enhance the information rate while achieving a comparable BER performance to that of its conventional Nyquist-based OTFS counterpart that employs the same root-raised-cosine shaping filter.