Abstract:Ensuring the safety and robustness of autonomous driving systems necessitates a comprehensive evaluation in safety-critical scenarios. However, these safety-critical scenarios are rare and difficult to collect from real-world driving data, posing significant challenges to effectively assessing the performance of autonomous vehicles. Typical existing methods often suffer from limited controllability and lack user-friendliness, as extensive expert knowledge is essentially required. To address these challenges, we propose LD-Scene, a novel framework that integrates Large Language Models (LLMs) with Latent Diffusion Models (LDMs) for user-controllable adversarial scenario generation through natural language. Our approach comprises an LDM that captures realistic driving trajectory distributions and an LLM-based guidance module that translates user queries into adversarial loss functions, facilitating the generation of scenarios aligned with user queries. The guidance module integrates an LLM-based Chain-of-Thought (CoT) code generator and an LLM-based code debugger, enhancing the controllability and robustness in generating guidance functions. Extensive experiments conducted on the nuScenes dataset demonstrate that LD-Scene achieves state-of-the-art performance in generating realistic, diverse, and effective adversarial scenarios. Furthermore, our framework provides fine-grained control over adversarial behaviors, thereby facilitating more effective testing tailored to specific driving scenarios.
Abstract:Safety-critical scenarios are infrequent in natural driving environments but hold significant importance for the training and testing of autonomous driving systems. The prevailing approach involves generating safety-critical scenarios automatically in simulation by introducing adversarial adjustments to natural environments. These adjustments are often tailored to specific tested systems, thereby disregarding their transferability across different systems. In this paper, we propose AdvDiffuser, an adversarial framework for generating safety-critical driving scenarios through guided diffusion. By incorporating a diffusion model to capture plausible collective behaviors of background vehicles and a lightweight guide model to effectively handle adversarial scenarios, AdvDiffuser facilitates transferability. Experimental results on the nuScenes dataset demonstrate that AdvDiffuser, trained on offline driving logs, can be applied to various tested systems with minimal warm-up episode data and outperform other existing methods in terms of realism, diversity, and adversarial performance.