Abstract:The visualization of volumetric medical data is crucial for enhancing diagnostic accuracy and improving surgical planning and education. Cinematic rendering techniques significantly enrich this process by providing high-quality visualizations that convey intricate anatomical details, thereby facilitating better understanding and decision-making in medical contexts. However, the high computing cost and low rendering speed limit the requirement of interactive visualization in practical applications. In this paper, we introduce ClipGS, an innovative Gaussian splatting framework with the clipping plane supported, for interactive cinematic visualization of volumetric medical data. To address the challenges posed by dynamic interactions, we propose a learnable truncation scheme that automatically adjusts the visibility of Gaussian primitives in response to the clipping plane. Besides, we also design an adaptive adjustment model to dynamically adjust the deformation of Gaussians and refine the rendering performance. We validate our method on five volumetric medical data (including CT and anatomical slice data), and reach an average 36.635 PSNR rendering quality with 156 FPS and 16.1 MB model size, outperforming state-of-the-art methods in rendering quality and efficiency.
Abstract:We present MS2Mesh-XR, a novel multi-modal sketch-to-mesh generation pipeline that enables users to create realistic 3D objects in extended reality (XR) environments using hand-drawn sketches assisted by voice inputs. In specific, users can intuitively sketch objects using natural hand movements in mid-air within a virtual environment. By integrating voice inputs, we devise ControlNet to infer realistic images based on the drawn sketches and interpreted text prompts. Users can then review and select their preferred image, which is subsequently reconstructed into a detailed 3D mesh using the Convolutional Reconstruction Model. In particular, our proposed pipeline can generate a high-quality 3D mesh in less than 20 seconds, allowing for immersive visualization and manipulation in run-time XR scenes. We demonstrate the practicability of our pipeline through two use cases in XR settings. By leveraging natural user inputs and cutting-edge generative AI capabilities, our approach can significantly facilitate XR-based creative production and enhance user experiences. Our code and demo will be available at: https://yueqiu0911.github.io/MS2Mesh-XR/