



Abstract:Multi-view crowd counting has been proposed to deal with the severe occlusion issue of crowd counting in large and wide scenes. However, due to the difficulty of collecting and annotating multi-view images, the datasets for multi-view counting have a limited number of multi-view frames and scenes. To solve the problem of limited data, one approach is to collect synthetic data to bypass the annotating step, while another is to propose semi- or weakly-supervised or unsupervised methods that demand less multi-view data. In this paper, we propose two semi-supervised multi-view crowd counting frameworks by ranking the multi-view fusion models of different numbers of input views, in terms of the model predictions or the model uncertainties. Specifically, for the first method (vanilla model), we rank the multi-view fusion models' prediction results of different numbers of camera-view inputs, namely, the model's predictions with fewer camera views shall not be larger than the predictions with more camera views. For the second method, we rank the estimated model uncertainties of the multi-view fusion models with a variable number of view inputs, guided by the multi-view fusion models' prediction errors, namely, the model uncertainties with more camera views shall not be larger than those with fewer camera views. These constraints are introduced into the model training in a semi-supervised fashion for multi-view counting with limited labeled data. The experiments demonstrate the advantages of the proposed multi-view model ranking methods compared with other semi-supervised counting methods.




Abstract:Recent deep learning-based multi-view people detection (MVD) methods have shown promising results on existing datasets. However, current methods are mainly trained and evaluated on small, single scenes with a limited number of multi-view frames and fixed camera views. As a result, these methods may not be practical for detecting people in larger, more complex scenes with severe occlusions and camera calibration errors. This paper focuses on improving multi-view people detection by developing a supervised view-wise contribution weighting approach that better fuses multi-camera information under large scenes. Besides, a large synthetic dataset is adopted to enhance the model's generalization ability and enable more practical evaluation and comparison. The model's performance on new testing scenes is further improved with a simple domain adaptation technique. Experimental results demonstrate the effectiveness of our approach in achieving promising cross-scene multi-view people detection performance. See code here: https://vcc.tech/research/2024/MVD.