Alert button
Picture for Yujin Oh

Yujin Oh

Alert button

Deep Learning COVID-19 Features on CXR using Limited Training Data Sets

May 05, 2020
Yujin Oh, Sangjoon Park, Jong Chul Ye

Figure 1 for Deep Learning COVID-19 Features on CXR using Limited Training Data Sets
Figure 2 for Deep Learning COVID-19 Features on CXR using Limited Training Data Sets
Figure 3 for Deep Learning COVID-19 Features on CXR using Limited Training Data Sets
Figure 4 for Deep Learning COVID-19 Features on CXR using Limited Training Data Sets

Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important. Unfortunately, due to the emergent nature of the COVID-19 pandemic, a systematic collection of the CXR data set for deep neural network training is difficult. To address this problem, here we propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis. The proposed method is inspired by our statistical analysis of the potential imaging biomarkers of the CXR radiographs. Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps, which are useful for COVID-19 diagnosis and patient triage.

* Accepted for IEEE Trans. on Medical Imaging Special Issue on Imaging-based Diagnosis of COVID-19 
Viaarxiv icon