Abstract:The unstructured and irregular nature of point clouds poses a significant challenge for objective quality assessment (PCQA), particularly in establishing accurate perceptual feature correspondence. To tackle this, we propose the Multi-scale Implicit Structural Similarity Measurement (MS-ISSM). Unlike traditional point-to-point matching, MS-ISSM utilizes Radial Basis Functions (RBF) to represent local features continuously, transforming distortion measurement into a comparison of implicit function coefficients. This approach effectively circumvents matching errors inherent in irregular data. Additionally, we propose a ResGrouped-MLP quality assessment network, which robustly maps multi-scale feature differences to perceptual scores. The network architecture departs from traditional flat MLPs by adopting a grouped encoding strategy integrated with Residual Blocks and Channel-wise Attention mechanisms. This hierarchical design allows the model to preserve the distinct physical semantics of luma, chroma, and geometry while adaptively focusing on the most salient distortion features across High, Medium, and Low scales. Experimental results on multiple benchmarks demonstrate that MS-ISSM outperforms state-of-the-art metrics in both reliability and generalization. The source code is available at: https://github.com/ZhangChen2022/MS-ISSM.
Abstract:Coordinated multi-arm manipulation requires satisfying multiple simultaneous geometric constraints across high-dimensional configuration spaces, which poses a significant challenge for traditional planning and control methods. In this work, we propose Adaptive Diffusion Constrained Sampling (ADCS), a generative framework that flexibly integrates both equality (e.g., relative and absolute pose constraints) and structured inequality constraints (e.g., proximity to object surfaces) into an energy-based diffusion model. Equality constraints are modeled using dedicated energy networks trained on pose differences in Lie algebra space, while inequality constraints are represented via Signed Distance Functions (SDFs) and encoded into learned constraint embeddings, allowing the model to reason about complex spatial regions. A key innovation of our method is a Transformer-based architecture that learns to weight constraint-specific energy functions at inference time, enabling flexible and context-aware constraint integration. Moreover, we adopt a two-phase sampling strategy that improves precision and sample diversity by combining Langevin dynamics with resampling and density-aware re-weighting. Experimental results on dual-arm manipulation tasks show that ADCS significantly improves sample diversity and generalization across settings demanding precise coordination and adaptive constraint handling.
Abstract:Task and Motion Planning (TAMP) has made strides in complex manipulation tasks, yet the execution robustness of the planned solutions remains overlooked. In this work, we propose a method for reactive TAMP to cope with runtime uncertainties and disturbances. We combine an Active Inference planner (AIP) for adaptive high-level action selection and a novel Multi-Modal Model Predictive Path Integral controller (M3P2I) for low-level control. This results in a scheme that simultaneously adapts both high-level actions and low-level motions. The AIP generates alternative symbolic plans, each linked to a cost function for M3P2I. The latter employs a physics simulator for diverse trajectory rollouts, deriving optimal control by weighing the different samples according to their cost. This idea enables blending different robot skills for fluid and reactive plan execution, accommodating plan adjustments at both the high and low levels to cope, for instance, with dynamic obstacles or disturbances that invalidate the current plan. We have tested our approach in simulations and real-world scenarios.