Abstract:We present ATLANTIS, the cyber reasoning system developed by Team Atlanta that won 1st place in the Final Competition of DARPA's AI Cyber Challenge (AIxCC) at DEF CON 33 (August 2025). AIxCC (2023-2025) challenged teams to build autonomous cyber reasoning systems capable of discovering and patching vulnerabilities at the speed and scale of modern software. ATLANTIS integrates large language models (LLMs) with program analysis -- combining symbolic execution, directed fuzzing, and static analysis -- to address limitations in automated vulnerability discovery and program repair. Developed by researchers at Georgia Institute of Technology, Samsung Research, KAIST, and POSTECH, the system addresses core challenges: scaling across diverse codebases from C to Java, achieving high precision while maintaining broad coverage, and producing semantically correct patches that preserve intended behavior. We detail the design philosophy, architectural decisions, and implementation strategies behind ATLANTIS, share lessons learned from pushing the boundaries of automated security when program analysis meets modern AI, and release artifacts to support reproducibility and future research.
Abstract:Static analysis is a widely used technique in software engineering for identifying and mitigating bugs. However, a significant hurdle lies in achieving a delicate balance between precision and scalability. Large Language Models (LLMs) offer a promising alternative, as recent advances demonstrate remarkable capabilities in comprehending, generating, and even debugging code. Yet, the logic of bugs can be complex and require sophisticated reasoning and a large analysis scope spanning multiple functions. Therefore, at this point, LLMs are better used in an assistive role to complement static analysis. In this paper, we take a deep dive into the open space of LLM-assisted static analysis, using use-before-initialization (UBI) bugs as a case study. To this end, we develop LLift, a fully automated agent that interfaces with both a static analysis tool and an LLM. By carefully designing the agent and the prompts, we are able to overcome a number of challenges, including bug-specific modeling, the large problem scope, the non-deterministic nature of LLMs, etc. Tested in a real-world scenario analyzing nearly a thousand potential UBI bugs produced by static analysis, LLift demonstrates an extremely potent capability, showcasing a high precision (50%) and recall rate (100%). It even identified 13 previously unknown UBI bugs in the Linux kernel. This research paves the way for new opportunities and methodologies in the use of LLMs for bug discovery in extensive, real-world datasets.